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CHAPTER 1. OVERVIEW

Wireless ad hoc networks are self-organizing and self-con�guring infrastructure-less networks

of nodes which are connected by wireless links. Examples are the 802.11/WiFi products and

wireless sensor networks (WSNs). Wireless technologies also include mobile devices, such as

cellular phones and the new cognitive radio network.

The popularity of these technologies is growing rapidly. Many of the tasks conducted on

the devices require the use of Personal Identi�able Information (PII). The increasing frequency

of incidents in which criminals are attempting to steal PII makes security of the information

stored and transmitted from the devices, a well as the device itself, paramount.

Recently we have seen large scale attacks on networks that go initially undiscovered due

to the large amount of data created by the intrusion detection tools themselves. High rates of

false positives can have an e�ect upon system administrators that is similar to the e�ect on

the townsmen in the story in which which the boy �cries wolf� too often. Additionally, large

volumes of security data can create a situation in which the administrator does not have time to

properly analyze it in a reasonable time. An example of this is the Target point-of-sale breach

in 2013. Although an alert was sounded by the intrusion detection system FireEye, system

administrators missed the warning. Over 40 million credit card numbers were sent to Russia

before administrators investigated the alarm and took action to close the breach [107]. Similar

breaches occurred at Home Depot and a variety of other retail centers. With high false positive

rates for anomaly detection common, research has now moved more towards hybrid solutions.

All of these methods require some prior training of the network nodes or pre-positioning of data

for comparison.

Perhaps the solution is not more data. Rather, the solution may lie in the ability of a system

to e�ectively use select data. Igor Baikalov, chief scientist at Securonix, was quoted in an article



www.manaraa.com

2

by the New York Times [107]: �We don't need 'big data'. We need big information.� By carefully

removing the noise created by large amounts of data, we allow our security professionals to focus

on information with value, quickly identify attacks, and make timely decisions.

Our motivation for research related to intrusion detection arises from the current lack of

comprehensive research into methods of analysis of selective information in an e�ort to construct

a big picture of network security and integrity, termed as �network health�. Research into the

parameters of the nodes and networks, the interplay of parameters and their e�ect upon each

other, and how the concurrence of certain parameter levels portend negative or positive network

health can bring valuable insight into the diagnosis of network ills.

Our hypothesis is that, by adapting a methodology borrowed from the science of meteorology,

we can utilize the data available at both the node and cooperative network levels and create

a synoptic picture of network health, providing indications of any intrusions or other network

issues. Parameters such as packet delivery ratio, packet sequence number, route-add ratio, and

many others have previously been used to alert on and/or identify intruders. However, this data

also provides valuable information about the state of the network as a whole. By analyzing the

packet, route, and node data at a network level we expect to develop a synoptic picture of the

network. The visual representation of the synoptic network picture is expected to be much

like synoptic weather charts depicting the pressure centers that, once properly analyzed, are

indicative of changing weather. In this sense, just as barometers can monitor the environment

for approaching storms, we have network tools that monitor parameters that can be used to

identify malfunctioning areas of the wireless network. Since the synoptic analysis technique

presented is founded upon comparing the counts of events in or e�ects on the wireless network

it is anticipated that other attacks that are based upon causing or a�ecting countable events

that trigger changes in network characteristics are candidates for synoptic analysis. Examples

are attacks at the physical, network, and data link layers such as a sinkhole, jamming, and

wormhole assaults.

Chapter Two consists of our �rst paper, �A Layered Approach to Cognitive Radio Network:

A Survey�, which explores the attacks on the cognitive radio network [40]. In order to better

understand the types of attacks levied on wireless systems, and the cognitive radio network in
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particular, we conducted a survey of the current research. By classifying the attacks according

to the protocol layer at which the attack occurs we can better determine threat severity, precau-

tionary methods, and recovery strategies. Additionally, basing the classi�cations upon protocol

layers utilizes terminology already used in wireless communication security while simultaneously

describing for the reader the attack vector. Finally, understanding the similarities between the

threats can help us apply knowledge about previous attacks on other technologies to cognitive

radio networks.

Our major contribution is presented Chapter Three in our second paper, �Design and Anal-

ysis of a Method for Synoptic Level Network Intrusion Detection� [41]. The result is a rev-

olutionary way to analyze node and network data for patterns, dependence, and e�ects that

indicate network issues. The paper describes a method based on utilizing packet delivery ra-

tio (PDR), node reliability, route reliability, and entropy to develop a synoptic picture of the

network health in the presence of a sinkhole.

Chapter Four presents our third paper, �A Method for Synoptic Level Intrusion Detection

in a Wireless Ad Hoc Network�, which revisits sinkhole detection and identi�cation in a grid

network. The work is expanded to include a sinkhole in a thirty node scrambled network, and a

sinkhole in a one hundred node grid network. We also include the detection and identi�cation

of a HELLO Flood attacker using the same methodology.
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CHAPTER 2. A LAYERED APPROACH TO COGNITIVE RADIO

NETWORK SECURITY: A SURVEY

Modi�ed from a paper published in Computer Networks1

Deanna T. Hlavacek234 and J. Morris Chang5

2.1 Abstract

Cognitive radios have been identi�ed as a solution to the crowded spectrum issue. With

the realization of cognitive radio networks came the recognition that both new and old security

threats are relevant. The cognitive radio network is still vulnerable to many of the denial of ser-

vice, wormhole, routing, jamming attacks that plague other wireless technologies. In addition,

the cognitive radio network is vulnerable to new attacks based on cognitive radio innovations,

such as spectrum sharing, spectrum sensing, cognitive capability, and radio recon�gurability.

The scope of this survey is to present an overview of security threats and challenges to the

cognitive radio network, especially focusing on new solutions from 2012 and the �rst half of

2013. Included are prior mitigation techniques that are adaptive to the new technology, as well

as new mitigation techniques speci�cally targeted at new cognitive radio vulnerabilities. The

threats provided are organized according to the protocol layer at which the attack is targeted.

1Reprinted with permission of Computer Networks, 24 December 2014, Volume 75, Part A, Pages 414-436
2Graduate Student, Department of Electrical and Computer Engineering, Iowa State University.
3Primary Researcher and Author.
4Author for correspondence.
5Associate Professor Department of Electrical and Computer Engineering, Iowa State University.
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2.2 Introduction

It has been estimated that the people of the United States are now outnumbered by their

wireless devices. The proliferation of wireless devices such as laptops, notebooks, cellular phones,

smart phones, and tablets has caused the frequency spectrum used for transfer of information to

become crowded [84]. Also, the expected growth in media-rich consumer applications and wire-

less data transfer will continue to crowd the network, making additional spectrum throughput

a priority.

Currently in the United States spectrum is allotted to various services in three main cate-

gories: licensed, lightly licensed, and unlicensed [1]. Licensed spectrum refers to the portions of

the spectrum reserved by each country's equivalent of the Federal Communications Commission

(FCC) for speci�c uses, such as military, public safety, and commercial uses. Lightly licensed

spectrum refers to the bands that are generally regulated for licensed users, with regional or

other exceptions. In the unlicensed band there are prede�ned technical rules for the hardware

and radio technology intended to mitigate interference between the bands. The spectrum is

available for network setup by any person or entity, public or private, to include commercial

high speed internet, that does not infringe upon the band's rules [1].

In an e�ort to provide relief to the users of the overused spectrum, in 2010 the FCC allocated

unused spectrum between television channels, or �white spaces� for unlicensed use. In addition,

the FCC has proposed setting aside some low band spectrum, and possibly underutilized por-

tions of the military, amateur radio, and paging frequencies, for unlicensed use as long as the

primary user experiences no interference. Finally, in early 2013, the FCC opened a process to

allocate more high frequency spectrum for unlicensed use.

Another of the major challenges for the wireless medium is security. The WiFi brand

was adopted in 1999 based on the 802.11 standard. It was immediately realized that using the

electromagnetic wave as the propagation medium made physical security of the transmitted data

an impossibility. A conversation made of electromagnetic signals can be intercepted, jammed,

or injected with extraneous bits. These actions can cause the release of private information, the

inability to send and receive information, or the receipt of false or unreadable data.
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As with other wireless communications, the cognitive radio technology based on the 802.22

standard must enforce the security triad of con�dentiality, integrity, and availability (CIA). The

cognitive radio is subject to many of the same types of attacks that plague other cellular and

wireless communication systems. In addition, due to the cognitive radio's ability to self-organize

a network and establish routing similar to wireless sensor networks (WSNs), the cognitive radio

network (CRN) is also vulnerable to attacks originally designed for WSNs. Finally, the abilities

of the CRN to sense the environment, adjust spectrum usage parameters, collaborate with

neighbors, and learn provide new avenues for attack.

Because cognitive radio is in its infancy, there are many opportunities for research into the

security issues to which the new technology is vulnerable. Such research can drive the creation

of a more secure product. The papers [11], [69], and [83] provide a general overview of the

cognitive radio network model with a broad description of secure model considerations. The

authors of [68] provide a very extensive overview of all cognitive radio network issues, with an

in-depth look at the security issues speci�c to the new CRN vulnerabilities.

The papers [52] and [106] each provide a high level view of the legacy and newer threats

that can be applied to the cognitive network. The authors of [8] and [109] both take a broad

stroke at listing and describing threats speci�c to the cognitive radio. In addition, the paper [8]

adds a focus on the threats speci�c to the policy controlled cognitive radio. An in-depth look at

the primary user emulation attack and mitigation is presented by the authors of [99] and [109].

The paper [88] analyzes vulnerabilities of existing spectrum sensing and access protocols under

stochastic channels in the presence of jamming attacks. The authors of [92] concentrate on the

vulnerabilities of the physical layer.

Comprehensive, security focused studies for the cognitive radio network were presented by

[9, 32, 77] and [90]. The paper [90] takes the traditional approach of describing the possible

attacks on a CRN. The authors of [9] categorize and analyze the threat vectors (as compared

to attacks) and provides design considerations to alleviate the threats. A discussion on security

evaluation and certi�cation is included. Rather than analyzing the threats or attacks to the

cognitive radio, the paper [32] analyzes the 2010 and earlier solutions presented to mitigate

CRN security issues.
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The paper [77] takes a layered approach in its study of cognitive radio network security.

Four layers are presented: security applications, security strategies, security infrastructure, and

security primitives. Threats are also presented in categories: learning, hidden node, policy,

parameter, sensing.

The purpose of this paper is to provide a survey of security issues related to the cognitive

radio network. Potential attacks will be described, and proposed mitigation techniques will be

explored. The attacks in the survey are presented according to the targeted protocol layer.

Emphasis has been placed on presenting solutions proposed in 2012 and early 2013, when

available. The remainder of the paper is organized as follows: Section II describes the general

concepts and security considerations of the cognitive radio. Starting at Section III the paper

presents attacks and mitigation techniques based on communication layer protocols. Sections

III through VII present the Physical Layer, Data Link Layer, Network Layer, Transport Layer,

and Application Layer. Section VIII presents the Cross Layer attacks. The Cross Layer is a

class of attacks launched at one layer with the intent to do damage to another layer. Section

IX presents a framework for security of the cognitive radio network. Section X provides a

conclusion. Table 2.1 will provide snapshots of the attacks presented by layer.

2.3 Cognitive Radio

The cognitive radio is based on a software de�ned radio with adjustable operational pa-

rameters [2]. The software allows the radio to tune to di�erent frequencies, power levels, and

modulation schemes to establish or maintain a communication link. The hardware consists of

an antenna, a radio frequency conversion modules, a modem, and other modules [71]. The best

con�guration for the radio is determined by optimizing an objective function that considers

such factors as interference and noise, tra�c demand, mobility levels, and location.

In addition to the variable parameters mentioned above, the cognitive radio network is

further adaptable to changing situations with its ability to operate successfully in collaborative

(cooperative) or uncooperative networks. Generally, the throughput of the collaborative network

will be higher than that of the uncooperative network due to the ability of the cooperating radios

to share the frequency to which they will hop. However, when the network is under certain types
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of attacks, or in certain environmental situations, the uncooperative network con�guration may

be optimal. We must therefore analyze attacks and mitigation techniques for both scenarios.

It is generally agreed the cognitive radio must provide the following functions: spectrum

sensing, spectrum management, spectrum sharing, and spectrum mobility. Spectrum sensing is

required for the cognitive radio to sense the spectrum for the presence of the primary user or

other tra�c. Through spectrum management the radio is able to utilize the available spectrum

e�ciently without interfering with the primary user. The protocols established in the IEEE

802.22 standard govern the ability of the radio to share the spectrum with the primary user

and other secondary users. The radio is able to vacate a spectrum when the primary user is

indicated as present while continuing communication with the network due to the function of

spectrum mobility. The spectrum functions required by the cognitive network radio add avenues

of attack on the radio, network, and primary users in the area. These attacks may target the

spectrum sensing function by changing the spectrum environment, the decision making function

by manipulation of parameters of the objective function, or the learning engine by providing

false data about the environment that the learning radio will use in the future to make incorrect

or ine�cient decisions.

By classifying threats we can better determine threat severity, precautionary methods, and

recovery strategies. Additionally, understanding the similarities between the threats can help

us apply knowledge about previous attacks on other technologies to cognitive radio networks.

The following framework provides a classi�cation system for all cognitive radio network threats.

The threats are classi�ed according to the protocol layer upon which the attack is performed:

physical layer, data link (or MAC) layer, network layer, application layer, and cross layer. Cross

layer attacks are those in which the attack is launched utilizing one layer while the attack targets

another layer. Basing the classi�cations upon protocol layers utilizes terminology already used

in wireless communication security while simultaneously describing for the reader the attack

vector. We start our discussion at the bottom of the layer stack and move upwards.

Tables 2.1, 2.2, 2.4, 2.5, and 2.6 list each attack explored with the leg(s) of the security triad

a�ected by the attack. A majority of the attacks a�ect the availability of the cognitive radio

services. Protecting the system availability basically includes protecting the common control
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channel from saturation, ensuring the spectrum is sensed accurately, and the members of the

network are properly identi�ed and their information is accurate. Ensuring con�dentiality and

integrity of the data transmitted is accomplished by encryption with a proper key distribution

system, and proper identi�cation and vetting of the network members. Mitigation of the attacks

listed will help ensure secure communications.

Table 2.1 Attacks By Layer - Physical

Attacks

by Layer

Net-

work

Mem-

ber?

CIA Description Citation

PHY

Layer

Jamming External A Jammer maliciously sends

packets to hinder legitimate

spectrum usage.

[12, 14, 31,

60, 64, 75,

85, 93, 95,

97, 98, 111,

114, 119,

129]

Objective

Function

Internal A Attacker manipulates

transmission rate parameters so

cognitive engine will calculate

results that are biased towards

the attacker's interests.

[7, 17, 21,

56, 96, 121,

124]

Overlapping

Secondary

User

Both A A geographical region may

contain overlapping secondary

networks with a malicious user

in one network transmitting

signals that cause harm to the

primary and secondary users of

both networks.

[115, 127]

Primary

User

Emulation

External A An external attacker emulates

the signal of the primary user.

[16, 20, 27,

35, 36, 37,

48, 59, 65,

120, 126,

128, 132]
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2.4 Physical Layer

The physical layer is the lowest layer of the protocol stack, providing an interface to the

transmission medium. The physical layer consists of anything that is used to make two network

devices communicate, such as the network cards, �ber, or, as in the cognitive radio network

framework, the atmosphere. The operation of the cognitive radio network is more complicated

than other wireless communication networks because the cognitive radio uses the frequency

spectrum dynamically. Following are network attacks aimed at disrupting communication by

targeting the physical layer of the cognitive radio network.

2.4.1 Primary User Emulator Attack

Testing results show that the number of dropped calls can be increased by up to two or-

ders of magnitude due to primary user attacks [48]. Proper function of the spectrum sharing

feature of the cognitive radio network requires the radio's ability to distinguish between the

primary and secondary user signals. Techniques such as �lter detection, energy detection, and

cyclostationary-feature detection need to be leveraged to provide this distinction. In a hostile

environment, distinguishing the primary user from others can become extremely di�cult. In the

primary emulation attack, an attacker may modify their air interface such that it emulates the

primary-user's signal characteristics causing other secondary users to falsely determine the fre-

quency is in use by the primary user, and so vacate the frequency. The imposter may perpetrate

the attack sel�shly, so he can use the spectrum, or maliciously, so the other legitimate users will

have their communication disrupted, resulting in a Denial of Service attack. In addition, the

attacker can poison the data collected about the spectrum usage that is used by the learning

cognitive radio to determine which frequencies to try to access in the future. Therefore, the

primary user attack (PUE) can lead to an objective function attack (section 2.4.2) [120].

Determination that there is an imposter present in the network is the �rst step in mitigat-

ing the PUE attack. This subject falls into the area of robust distributed cooperative sensing

and the detection of anomalies. Most anomaly detection is based upon statistical analysis of

the sensed data. Localization of the malicious user can assist in the mitigation of the attack.
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The paper [65] provides a received signal strength indicator (RSSI) based transmitter localiza-

tion technique that can be used when three or more trusted nodes are present. Triangulation

with a correction technique considering multi-path signals and refraction provides an improved

localization method.

In a cooperative cognitive radio network each secondary user senses the spectrum period-

ically and reports the measurement results to the fusion center. The fusion center combines

the data and makes a determination as to whether the primary user is present or not. If an

attacker injects false positive o�set data, the fusion center may determine the primary user

is transmitting, when actually it is not. Conversely, if the attacker injects negative data, the

fusion center may falsely determine the primary user is not present.

In [36] a di�erential game is proposed as an avenue for primary user emulation mitigation.

Based on the di�erential attack game model the Nash equilibrium is derived, and the optimal

attack/defense strategy is devised. Experiment results indicate that using this strategy, the

secondary user can maximize the usability of the cognitive channels, and minimize the disruption

to the network due to primary user emulation attacks.

In the paper [59] the authors introduce the robust principal component analysis (PCA)

technique for spectrum sensing. The authors consider a cooperative cognitive radio network

with one primary user, several nodes, and one fusion center. In the worst case PUE attack,

the attacker would use tactics that include appearing intermittently and randomly to try to

prevent discovery. This activity can be represented by a sparse matrix. Robust PCA is based

upon matrix theory and can be applied to get the estimated low rank matrix and the estimated

sparse matrix from the corrupted observation matrix. Once the low rank and sparse matrices are

estimated, the received signal power can be estimated for the suspect nodes. This transmission

energy data is removed from the collected data at the fusion center. The data cache is no longer

poisoned, and the determination of the presence of a primary user is more accurate.

The authors of [27] and [126] provide methods of determining if a primary user emulator is

in the network when the primary user location is known and �xed. The method of the paper [27]

is based on using a trust-based transmitter veri�cation scheme to properly vet the primary user.

It is assumed all radios are aware of the location of, and therefore the distance to, the primary
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Figure 2.1 Proposed transmitter veri�cation scheme

[27]

users in the area. The distance between the primary user and the cognitive radio is calculated

based on known coordinates. The distance between radio and the user sending the primary

user type signal is also calculated based on the received power levels. The trustworthiness of

the user is determined by a comparison of the resulting distances. Figure 2.1 re�ects the �ow

of the decision process.

In [126] the authors provide a method of defense against the primary user emulation attack

using belief propagation. All secondary users in the network iteratively calculate the location

function, a compatibility function, compute messages, exchange the messages with neighbors,

and calculate the belief function until convergence. At convergence, any existing attacker will

be detected, and secondary users will be noti�ed of the attacker's signal characteristics via

broadcast message. This allows all secondary users to avoid the attacker's primary emulation

signal in the future.

The location function can locate the attacker based on di�erences in the received strength

of the transmitted signal. Since none of the secondary users are aware of the transmitted signal

strength or their distance from the attacker, the pinpointing of the attacker location depends

upon the di�erence in measured signal strength by several neighbors. It was determined that
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one secondary node needs to interact with at least three neighboring nodes to estimate the at-

tacker's location. After determining the location and computing the compatibility function until

convergence, if the belief manipulation sum is higher than a speci�c threshold, the transmitter

is determined to be the primary user, and not an attacker.

Similarly, the authors of [19] provide a transmitter veri�cation scheme called LocDef (localization-

based defense). The scheme veri�es whether a signal is from an incumbent by estimating its

location and observing the signal �ngerprint. Localization is determined by utilizing an under-

lying wireless sensor network (WSN). The WSN collects snapshots of received signal strength

across the cognitive radio network. The collected measurements are smoothed and the peaks

are identi�ed. Using the peaks, the transmitter locations can be identi�ed.

The papers [16] and [35] propose methods for cooperative sensing in the presence of a primary

user emulator and the probable detection of a primary user. When an attack is underway,

secondary users in the area receive the signals from both primary user and attacker. This sensing

information is sent to the fusion center. In [35], when di�ering signal energy is reported as

determined by a network threshold, statistical probability is applied to the reports to determine

if the primary user or a malicious emulator is present.

In [16] the information is combined with a weighting system to maximize the probability

of detection within the constraints of a false alarm probability. The weights are related to

the channel state information (CSI) between the nodes. The CSI is estimated using existing

channel estimation algorithms. The method presented maximizes the probability of detection

of the primary user by deriving optimal weights. It must be noted this paper assumes the

primary user emulator (attacker) has been determined as present, and so the goal is to detect

the primary user in the presence of the attacker with the assistance of multiple cooperative

cognitive radio users.

Identi�cation of a primary user emulator through a radio �ngerprint has been proposed in

the papers [20], [37], [117], and [132]. With a radio �ngerprint, a wireless device can be identi�ed

by its unique transmission characteristics. Electronic �ngerprinting is already used by cellular

operators to prevent cell phone cloning. The �ngerprint is due to the slight variations in the

manufacture of the hardware components.
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In the paper [20], the authors employ the spectrum sensing capability of the cognitive radio

itself to identify primary user attacks. The uniqueness, or �ngerprint, of the wireless signals is

determined by use of the Neyman-Pearson test. The test is used to di�erentiate between the

channel states of transmitters over Rayleigh fading channels. Simulation showed the method

was e�ective in identifying a primary user emulator, thereby allowing the network to defend

against the attack.

The authors of [132] focus on the phase noise of a signal created by the local oscillator.

Phase noise is the rapid, random �uctuations in the phase of the waveform. It causes spectrum

spread and deformation, and is unique. After extraction of the phase noise from the received

modulated signal, applet wavelet and higher-order statistical analysis is applied to identify the

fake primary user transmitters. Results of simulation experiments showed the phase noise of two

receivers using the same local oscillators was di�erent. This indicates it is feasible to identify a

transmitter for primary user emulation defense.

Performance analysis of the cognitive radio network is the focus of the paper [128]. The

authors create a three dimensional Markov model to provide a method of performance analysis

using a common control channel when under primary user attack. The outage probability

metric is rede�ned, and the new performance metric common control channel recovery time

is introduced. Together, the metrics identify and evaluate the impact of the common control

channel on the network. The blocking rate and dropping rate of the cognitive radio network

are also calculated.

Outage probability, or the probability of network suspension, re�ects the chance a cognitive

radio network will suspend. Suspension occurs with the arrival of a new primary user when all

of the available N channels are already being utilized by only primary users, fake primary users,

and the common control channel. Since no secondary users are currently using a channel, the

common control channel must drop, opening the frequency for the new primary user. At this

point the cognitive radio network is suspended.

With the system state de�ned as (i, j, k) where i and j represent the number of primary

users and primary user emulators, and k represents the sum of the secondary users plus the

common control channel, the outage probability is the sum of the state probabilities where k =
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0. Therefore, the outage probability is determined by

Poutage =
∑

(i, j, k)εΩ1P(i, j, k) , (Eq. 1)

where Ω1 = {(i, j, k) | i + j = N and k = 0}.

The common control channel recovery time is the average time expected for recovery after an

outage. The common control channel will only recover by using a channel vacated by a primary

user or primary user emulator. The analysis is based upon the property that the sum of two

Poisson processes results in a Poisson process. Therefore, the state probability distribution

combined with the holding time of the local primary users and emulators provides the common

control channel recovery time as

T ccc =
∑

(i j,k)εΩ2

1

iµPU + jµPU + λPU
P(i,j,k)

+
1

NµPU
P(N,0,0), (Eq. 2)

where Ω2= {i + j = N, j > 0, k = 0}, the arrival rates of PUs, fake-PUs and SUs are λPU ,

λfPU and λSU , respectively, and the channel holding times are exponentially distributed with

the mean,
1

µPU
,

1

µfPU
, and

1

µSU
.

As expected, the analysis of tests using the formulas above show that a network under

the attack of primary user emulators takes a longer time to recover than a network not under

attack. This recovery time was also shown to increase as the number of primary user emulators

increased. Additionally, the larger the number of primary user emulators, the greater chance

the network would drop into the suspended state.

2.4.2 Objective Function Attack

Cognitive radios are adaptive to the environment. Many radio parameters are available

for manipulation in the e�ort to adapt the radio to the environment by maximizing objective

functions, and therefore the radio's ability to communicate over the medium. Objective function

attacks apply to an attack on any learning algorithms that utilize objective functions. Another

name for objective function attacks is belief-manipulation attacks. Parameters manipulated
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include, but are not limited to, bandwidth, power, modulation, coding rate, frequency, frame

size, encryption type, channel access protocol.

The authors of [21] give the following objective function example. Assume the function

exists where w i are weights, P is power, R is rate, and S is security.

f = w1P + w2R+ w3S (Eq. 3)

Now assume an attacker wishes to lower the security with which the radio is transmitting

messages. The attacker would monitor the channel, and jam the channel whenever the radio

tries to send a message at the more secure level. The cognitive radio would learn that attempting

to transmit at the higher security level would not be successful. This would result in either the

higher security messages being sent at a lower security level, or the messages would not be sent

at all. Similar attacks could cause a radio to avoid certain frequencies, rates, modulations, or

bandwidths.

There have been few clearly e�ective methods of mitigating objective function attacks. One

simple proposal has been made by [56]. The proposal suggests naively de�ning thresholds for

each of the adjustable parameters. Communication would be prevented when one or more of

the parameters did not ful�ll its prede�ned threshold.

The authors of the papers [17] and [124] present the covert adaptive injection attack. In

these examples of an objective function attack, the attacker is capable of learning and adjusting

its strategies in response to the environment. The attacker attempts to stealthily manipulate

the sensing results of a distributed network, thereby attacking the objective functions and

decision making of the cognitive radio network. A robust distributed outlier detection scheme

is presented to counter the covert attack.

The method presented by [124] uses a localized detection threshold at each node, and adapts

the threshold with the diminishing behavior of state di�erences, exploiting the state convergence

property. With this scheme, it is more di�cult for an attacker to guess all of the thresholds of the

neighbors at any instance. When a network node suspects an attacker, it sends a primitive alarm

to its the immediate neighbors. The alarm is not forwarded. If the node collects primitive alarms

from at least half of the nodes that are common neighbors of the node and suspected attacker,
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it broadcasts a con�rmed alarm. The con�rmed alarm is forwarded to the remaining network.

Veri�cation of the attacker is provided using a hash-based computation. This veri�cation ensures

the correctness of a neighbor's state update process with the goal of thwarting collusion attacks

by common neighbor cross-validation.

Alternatively, the method presented in [17] uses a neighborhood voting system. After each

secondary user has collected the sensing reports from its immediate neighbors, the nodes de-

termine an algorithm based mean, and conduct a spatial correlation test. Based on the results,

each node casts votes about the legitimacy of each of its neighbors. If a node receives more

than half of the neighbor votes categorizing it as suspicious, the node is considered malicious.

The authors of [96] present a solution to the false channel information exchange attack. This

is a form of the objective function attack because the goal of the attacker is to a�ect the decision

making algorithms of the network nodes. The authenticity of the received channel information

is analyzed using spatial correlation algorithms. Simulation shows that the algorithms achieve

a high detection rate of malicious nodes with a low false alarm rate.

In [121] the authors explore a framework of power control schemes based on a robust Markov

decision process. If an attacker can in�uence the power scheme of the radio, the attacker can

a�ect the throughput of the network. Additionally, the authors use a delayed Markov decision

process to model the throughput maximization problem while experiencing spectrum sensing

delay caused by a malicious user. The delayed Markov decision process is solved by using a

modi�ed dynamic programming approach.

Belief manipulation attacks as related to the knowledge base of learning algorithms is pre-

sented in [7]. Many defense methods have been studied as related to the mitigation of jamming

and other throughput a�ecting attacks. However, less studied has been the e�ect on the learn-

ing that takes place over time based on the objective function results, and how the learning is

poisoned by intermittent attacks. To determine if there is an attacker present, monitor nodes

are assigned to sample the channels over a time window and Wald's Sequential Probability

Ratio Test rule is applied.

The softmax policy [100] includes randomized user actions based on some probability dis-

tribution in an e�ort to hide information about the learning algorithm. In the algorithm, more
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weight is applied to actions that performed well in the past. By avoiding the attacker's in�uence

by using and sensing channels where the attacker is not expected to be present, the learning

algorithm is reinforced and becomes increasingly accurate.

2.4.3 Overlapping Secondary User

As shown in Figure 2.2, a geographical region may contain coexisting, overlapping multiple

secondary networks. Such a situation places dynamic spectrum access sharing at risk through

both objective function and primary user vulnerabilities by one malicious node, or accidentally

by a friendly node. A malicious user in one network may transmit signals that cause harm

to the primary and secondary users of both networks. Signals transmitted maliciously may

provide false sensing information, thereby negatively a�ecting the objective function in one or

both networks. The malicious user may intermittently falsely emulate the primary users of

each network causing each network to vacate the channel. Additionally, in special situations,

a friendly node reporting the presence of the primary user in network one may inadvertently

be relaying the same information to network two, negatively impacting network two's objective

function. This attack can be hard to prevent since the malicious node may not be under the

direct control of the secondary station or users of the victim network. This is essentially an

attack on the capability of the cognitive radio network for spectrum sensing and sharing of both

infrastructure and ad hoc based networks. The result is a denial of service attack.

The authors of [127] provide three possible mitigation solution categories for the overlapping

secondary user attack. These mitigation techniques are also applicable to many other denial of

service attacks, and are based upon work in other areas.

1. Modifying the modulation scheme: The use of frequency hopping and direct-sequence

spread spectrum techniques can make it more di�cult to launch e�ective denial of service

attacks. The attacks may still degrade service quality.

2. Detection and prevention of attacks: Observing the primary user's location and

signal characteristics, as described in section 2.4.1, �Primary User Emulator Attack�, can

help the network identify if a node is performing maliciously.
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3. Using authentication and trust models: In the paper [115] a system is designed to

determine a suspicion level, trust value, and consistency value to identify and exclude

a malicious user. Nodes become suspicious when the reported channel state is not in

agreement with the channel state reported by others. A trust value for each node is

calculated over time, and a consistency value re�ects the consistent trust value over time.

A node with a consistently low trust value will eventually be identi�ed as a possible

malicious user and dropped from the network.

Figure 2.2 Overlapping Secondary Attack

2.4.4 Jamming

Cognitive radio networks require a minimum signal-to-noise ratio to decode a signal sent

from their corresponding transceivers. Jamming, one of the most basic types of attacks in the

cognitive radio network, attempts to adversely a�ect the signal-to-noise ratio. In this attack, the

malicious user intentionally and continuously transmits on a licensed band, making it unusable

by the primary or other secondary users. The attack is ampli�ed by transmitting with high

power in several spectral bands. Jamming can be detected with triangulation and energy based

techniques. However, the time lost with these techniques allows the attacker to severely impact

the network. A mobile attacker can be even more di�cult to locate.

Before initiating mitigation techniques against jamming, the cognitive radio network must

�rst determine that a jammer exists. Besides the presence and actions of a jammer, poor
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performance experienced by a receiving node can also be caused by natural causes such as

network congestion.

A statistical approach is often used for detecting anomalous spectrum usage attacks, specif-

ically stealthy jamming, and is proposed in both papers [85] and [97]. In [85], the statistical

analysis is a three-step cross-layer process. First, statistical analysis is performed on the infor-

mation gathered from multiple layers. Next, a multiple layer discrepancy search is conducted on

the data collected by comparing the data from several layers. In the third step, simple statistical

measures are used to determine if there are discrepancies among the data from the network and

physical layers using only snapshot data. For instance, the physical layer may report numerous

available channels in the area, but few nodes appear in the resultant paths. This may indicate

jamming is occurring. Due to the possibility that there can be other reasons the nodes do not

appear, there could be a high false alarm rate if a comparison to historic data is not conducted.

Using time series data available from multiple layers can minimize the false alarm probability.

This is because the probability distribution of chosen observables will change when the network

is under attack. The observables are carefully chosen such that their statistics will indicate a

sharp change with high probability in the presence of an attacker. Although it is assumed the

data from di�erent layers is independent, it has been shown that the observed changes before

and after the event are related via time.

In the paper [97] sequential detection is used to compare the statistical distribution before

and after an attack. Con�rmation of attack is obtained by a cross-layer three-step process.

First, the statistical analysis of the paths/nodes is obtained from route discovery. If there are

anomalous patterns observed, passive checking is performed by cross checking the pattern with

the physical layer spectrum sensing results. Last, active checking is performed by selectively

injecting controlled tra�c into the potentially congested area and collecting measurements. The

passive and active steps are conducted to con�rm the results in the statistical analysis.

Jamming is an attack that a�ects both cooperative and uncooperative cognitive radio net-

works. In general, uncooperative networks are more resistant to jamming attacks because the

nodes do not need to use a common channel to share information about the frequency to which

they are hopping. In cooperative networks, the jammer can either capture the shared channel
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information and move to the same frequency to continue the attack, or inhibit the channel data

exchange by jamming the common channel. However, although existing anti-jamming schemes

for uncooperative networks are more robust when under attack, they are not as e�cient as

cooperative network channel sharing schemes when not under attack [98]. With no jammer

present, network throughput is lower in uncooperative networks because the nodes need to

use energy in the attempt to discover upon which channel the intended transmitter/receiver

is transmitting/listening. Therefore, combining cooperative frequency sharing techniques with

uncooperative networking and anti-jamming methods will make the cognitive radio network

adaptable to changing network conditions while preserving network throughput. Below we

describe anti-jamming methods for both cooperative and uncooperative networks.

2.4.4.1 Cooperative Network Jamming Mitigation Techniques

A scenario comprised of a primary user, secondary user, and jammer was studied in the paper

[12]. The authors conducted a simulated jamming attack to derive the best combinations of

the number of control and data channels to enhance the legitimate secondary user transmission

during jamming. The data and control channel allocation determination was also speci�c to the

type of application and the quality of service required for good throughput of the application.

It was shown that there is a tradeo� between e�ciency and transmission probability when

allocating more than one channel to common control. Additionally, it was noted that the results

did not always conform to what was initially expected. For an example, using the extremely

conservative strategy of �ve control channels and three data channels was less e�cient than using

a less conservative strategy of four control channels and four data channels for an electronic

mail application under jamming attack.

The paper [114] explores collaborative defense of the network against collaborative jammers.

The collaborative defense is mounted using a multi-tier proxy-based cooperative defense strat-

egy designed to exploit the temporal and spatial diversity available to the legitimate users in

an infrastructure-based cognitive radio network. The network is divided between proxies and

followers. The proxies act as relays between the followers and the base station. Followers must

connect to a proxy, rather than straight to the base station. This adds another layer to the
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communication hierarchy. When the users cooperate, the jammers necessarily need to jam both

the followers and proxies to jam all communication. Therefore, with the collaborative defense

strategy, the jammers need more jammers to e�ectively suspend the network communication.

Simulation results show that spectrum availability is greatly improved when the users cooperate.

However, due to the extra layer in the communication hierarchy, the latency of communication

is also increased.

A targeted jamming attack and its mitigation is presented in [43]. The authors describe the

�Most Active Band� attack in which a jammer determines and targets the band with the most

tra�c for jamming, resulting in denial of service on that band. The coordinated concealment

strategy (CCS) is o�ered as a countermeasure. Basically, a few secondary user nodes sacri�ce

themselves by moving to a single band, drawing the attacker's attention. The �surviving� nodes

are free to operate on other bands under the concealment of the ruse.

In [93] and [111] the authors assume the jammer's signal and the primary user signal are

distinguishable and the attackers will not jam the primary user. The contention between the

jammer and the secondary users is based upon the secondary users' aim at maximizing spectrum

utilization with carefully-designed channel switching schedules, while the malicious attacker's

desire is to decrease spectrum utilization by strategic jamming. From this description, the

objectives of the secondary user and jammer are opposite, and can be modeled as a zero-sum

game. In the game model the secondary users adapt their strategy on switching between control

and data channels according to their observations about spectrum availability, channel quality,

and attacker's actions. According to simulation the calculated optimal policy can achieve better

performance in terms of throughput as compared to a learning policy that only maximizes the

payo� at each stage while not considering the environment dynamics, the attackers' cognitive

capability, and a random defense policy.

A game-theoretic perspective is also used to determine the optimal defense strategy in [129].

A simple stochastic swarm optimization algorithm, called particle swarm optimization (PSO),

is applied to solve the optimization problems numerically. PSO is motivated by many natural

phenomena, and has been shown to represent each group member seeking the optimal solution

for itself as it relates to its neighbors.
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2.4.4.2 Uncooperative Network Jamming Mitigation Techniques

The authors of [23] provide a jamming solution based on a distributed, probabilistic protocol.

This method is unique in that it avoids control channels, does not require information related to

the node neighborhood, and does not require statistics about the channel usage. The solution

is based upon probabilistic pairing approach that allows the node to dynamically �nd a peer

and sync on a random, available frequency. The solution also requires the nodes be preloaded

with pairwise keys which are used as seeds to the process of �nding a common frequency band.

In the syncing process, each node randomly chooses a key and challenges its neighbors. If there

is a collision, the nodes agree on a frequency band for communication. Nodes experiencing no

collision again randomly choose a key and challenge their neighbors. For the scheme to work,

each node needs to dynamically sense the spectrum to determine a frequency free for use.

The authors of [119] developed a channel hopping defense strategy using the Markov decision

process approach based on a secondary user that uses only one channel. To adequately use the

decision process the user must learn some attacker information by observing the environment.

The secondary user �rst estimates useful parameters based on past observations using maximum

likelihood estimation (MLE). The user then utilizes the Q-learning process, which is presented

as an avenue for the secondary user to learn and update the defense strategy without knowledge

of the underlying Markov model. The scenario is extended such that the secondary user can

utilize all available channels simultaneously. In this scenario, randomized power allocation is

used as the defense strategy. Derivation of the Nash equilibrium for this Colonel Blotto game

provides minimization of the worst-case damage.

In the paper [18], the authors developed a similar jamming-hopping, policy iteration scheme

based on the Markov Decision Process which utilizes the Q-learning process to lessen the com-

putation burden. However, in this scheme the secondary user has a �nite set of channels from

which to choose. The set of channel choices is dependent upon the state of the environment at

decision time.

The paper [31] uses a game-theoretic context to formulate the interaction between commu-

nicating nodes and an adversary. Experimental results show that randomized actions by both
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the secondary user and the jammer result in lower game values than the expected Nash equilib-

rium for pure information-centric channel capacity. Results also show that packetized, adaptive

communication is an advantage for the power-limited jammer. Additionally, it is proven there

exists a threshold on the average power of a jammer above which the transmitter must use a

rate equivalent to the maximum power of the jammer.

The authors of the paper [95] present the solution to jamming modeled after a solution

to a multi-armed bandit problem. In this scenario the secondary user is the player trying to

pull the most rewarding lever at each time slot. The authors use Whittle's linear program to

determine which channel the secondary user should select for transmission. The model is valid

for a situation in which the state of the non-accessed channels changes when not chosen. For the

situation in which the state of the channels is static even when not chosen (in other words, the

jammer's strategy is �xed), the author's solution is based on a stochastic multi-armed bandit

process using indexing solutions.

Similarly, the authors of [112] and [113] formulate the jamming problem as a multi-armed

bandit problem. In this solution the secondary sender and the receiver both adaptively choose

their sending and receiving channels by basing their decisions on all of their past decisions and

observations. With the convergence of the learning algorithms, the sender and receiver hop to

the same set of channels with high probability under the presence of a jammer.

The paper [98] presents the Uncoordinated Frequency Hopping (UFH) scheme in an e�ort to

allow key establishment between two nodes in the presence of a jammer without a pre-shared key.

With the assumption that a jammer cannot jam all of the communication channels at the same

time, the message is divided into multiple parts and sent across several frequencies according

to a random frequency hopping scheme. Although a secret channel sequence is not utilized by

the sender and receiver, it is shown that with su�cient transmission attempts the sender and

receiver will converge upon the same channels in a number of time slots. Note also that the

time slots for the sender and receiver do not need to be synchronized; instead the receiver is

allowed to switch channels less often than the sender. The e�ect is a reduced number of partially

received fragments. Experimental results show that the UFH scheme achieves the same level

of anti-jamming protection as coordinated frequency hopping. However, the experiments also
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show that the UFH scheme results in lower communication throughput with higher storage and

processing costs.

The authors of [61] present the time delayed broadcast scheme (TDBS). The scheme does

not rely upon commonly shared secrets or common control channels to coordinate broadcasts.

Alternately, the scheme relies upon a pseudo-noise (PN) frequency hopping sequence to establish

communication. Unlike conventional PN sequences for multi-access systems, the PN sequence

presented exhibits high correlation to enable broadcast. Additionally, the experimental results

show the TDBS scheme can support and maintain broadcast communications while in the

presence of an inside jammer.

The paper [75] examines the resiliency of rate adaptation algorithms (RAA) against smart

jamming attacks. According to the experimental results, several techniques can prevent smart

jamming by limiting the amount of key information that can be inferred by an attacker. The

lack of information forces the attacker to operate as a memory-less jammer. For example,

the SampleRate protocol can be protected by using randomized, non-sequential probing. To

conceal the explicit and implicit rate information, such information should be protected using

post-coding encryption. Using a shared secret key and a random initialization vector can ensure

the explicit and implicit rate information is concealed.

In the work [14] the authors present another secret-sharing mechanism that does not require

pre-shared secret keys. The method is called Time Reversed Message Extraction and Key

Scheduling (TREKS). The TREKS mechanism is shown to be e�cient and adversary-resilient

and is based upon intractable forward decoding and e�cient backdoor decoding. As with the

other methods provided which do not use pre-shared secret keys, TREKS solves the circular

dependency problem. Additionally, experimentation showed that TREKS was four magnitudes

faster than the prior solutions to CDP, with minimum storage overhead and at most twice the

computation required for traditional spread spectrum communication.

2.5 Media Access Control Layer

The Media Access Control (MAC) layer is a sublayer of the data link layer. The MAC layer is

designed to support multiple users on a shared medium within the same network. A Common
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Table 2.2 Attacks By Layer - Data Link

Attacks

by Layer

Net-

work

Mem-

ber?

CIA Description Citation

Data

Link

Layer

Byzantine Internal A Attacker sends false local

spectrum sensing results to

neighbors/fusion center causing

the receiver to make wrong

spectrum sensing decisions.

[4, 25, 26,

27, 30, 38,

45, 50, 62,

70, 74, 76,

79, 80, 81,

87, 123]

Control

Channel

Jamming

Both A Jamming of the control channel

causes network confusion by

interrupting the radio

cooperation.

[15, 54, 61,

63, 64, 66,

101, 102,

130]

Control

Channel

Saturation

Internal A Based on the fact that if a

cognitive radio is unable to

complete negotiations during

the limited time of the control

phase, the radio defers from

transmission during the next

data phase.

[66, 73]

Control Channel (CCC) may be used for an exchange of control messages to coordinate the

users.

2.5.1 Byzantine Attack

In the Byzantine attack, also known as spectrum sensing data falsi�cation, the attacker

injecting the false sensing information into the decision stream is a legitimate member of the

network, and is referred to as the Byzantine. Byzantines may perpetrate the attack to sel�shly

acquire increased spectrum availability for themselves, or the attackers may have a goal of

disrupting the throughput of the network for other nefarious reasons.

The authors of [103] propose a method of detection of Byzantines called Pinokio. Pinokio

uses a Misbehavior Detection System (MDS) that maintains a pro�le of the network's normal
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behavior based on training data. The MDS detects misbehavior by monitoring the bit rate

behavior. By protocol, the bit rate should change periodically, should be adjusted by a node

contiguously, the bit rates between two nodes should show some reciprocity, and usage of a

low-bit rate over a wide channel. Nodes exhibiting these characteristics are not acting in a

manner conducive to spectrum e�ciency, and so are suspect.

Another method of misbehavior detection called Cooperative neighboring cognitive radio

nodes (COOPON) is provided by the authors of [49]. Detection of the sel�sh node is detected

by the cooperation of other legitimate neighboring nodes. All of the secondary nodes exchange

channel allocation information both received and sent to the suspect nodes. Each neighbor

compares the number of channels reported to be used by the suspect node to the channels the

neighbors report as being used. A discrepancy reveals a sel�sh actor.

Several techniques have been proposed related to trust and reputation metrics. In the

context of cognitive radio networks, trust and reputation based schemes are very similar. Trust

in a behavior based model is de�ned as the mutual relationship between two entities for a

speci�c action. Trust most often refers to acknowledging nodes that are proven trustworthy in

some way. Alternatively, reputation schemes are generally more interested in identifying those

nodes that are bad actors.

A trust framework is proposed by [70] consisting of a TrustPolicy Engine and a TrustMetrics

Engine. The TrustPolicy Engine targets four main areas: security mechanisms, enhancing sec-

ondary user's worthiness, spectrum sharing with legacy networks, and inter-operator spectrum

sharing. The engine is designed to analyze the behavior of a cognitive radio according to the

notion of trustworthiness. The proposed solution considers two types of trust. Social trust

is based on historical actions; quality of service trust is related to performance issues. Both

trust aspects are used to determine a trust level based on past behavior and impact on the

performance of the network.

The TrustMetrics Engine provides for the exchange of trust information between the nodes

and algorithms. This information consists of past performance actions and impacts, and is used

to create a prediction of future behaviors. The data is passed to a Performance Engine that

implements mechanisms to thwart cognitive radio network attacks.
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Several recent authors have tackled the idea of trust or reputation based mitigation methods

for the Byzantine attack using the sensed data sent to the fusion center. The authors analyze

the case in which the Byzantines do not send true information about the state of spectrum. The

information sent by the suspect nodes is compared to the information received from a trusted

node.

In the paper [30], a node's reported sensed data that deviates from the data supplied by

a trusted source results in the node being labeled as malicious. In [74], when di�ering signal

energy is reported as determined by a network threshold, statistical probability is applied to

the reports to determine if a malicious node is present.

The papers [25], [62], [87] and [122] all use reputation-based detection schemes over time to

identify bad actors. In these schemes, a reputation measure is assigned to each node representing

the number of times the local decision of a node was di�erent than the global decision of the

fusion center in a time window. The higher the value of the measure, the less reliable the node's

observation is considered. To increase the accuracy of the decisions made by the fusion center,

data from nodes with a high number of mismatches is not included in the sensing algorithms.

The papers di�er in the algorithms, weights, and observables used to determine the trust levels

of the nodes.

In [76], [79], and [80] the authors present trust based authentication systems. In the model

in the paper [76], the node with the highest level of trust is appointed as the base station. Au-

thentication between each node and the base is accomplished in two ways. With cryptographic

authentication, the base station generates secret keys for the network members. Each node

shares a unique key with the base station.

With the certi�cate based trust authentication technique, the base station generates trust

values for each node. Trust values are based upon the recent activities of a node in the network,

such as success or failure in forwarding a packet, and the length of time the node has been a

member of the network. The trust value of each node is updated by the base station every time

the base station sends a broadcast message. If a request is received by the base station, the

base station references the node's trust value for a determination of the appropriate action. A

second secret key is shared between the base and all nodes of a speci�c, equal trust level.
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The base station also sets a trust threshold for the network. Any node not meeting the

minimum trust threshold is expelled from the network and placed on a blacklist for rejection of

future joining or other requests. By using the trust method, any bad actors, or Byzantines, in

the network will be identi�ed and segregated from the network.

The method to assign trust in [80] is based on three factors for determining sensing trust

level. Context is the �rst factor and includes time, location, spectrum, code, and angle. The

second factor is based on sensing evidence scope and importance. This factor re�ects the

importance of evidence based on the impact of the action on the network. Lastly, all node

behavior is collected relative to a time window. The time window allows a node �uctuating

between trustworthy/untrustworthy and considerate/inconsiderate behavior to be properly ana-

lyzed for intent over time. Together the three factors help capture the transition of a benevolent,

well-behaving node to a malevolent node over time, allowing the network to properly and con-

tinuously identify currently misbehaving nodes. Additionally, the algorithm allows the node's

reputation to rise slowly but fall quickly to punish a secondary user's erratic behavior. The

reputation values are considered in data fusion and resource allocation for the secondary users.

The trust calculation presented in [79] relies on several steps and inputs. The direct trust

calculation is based on a cumulative attribute determined by the success or failure of past

requests, responses, and retransmissions. The indirect trust calculation considers the neighbors'

determination of the node's trust. The trust values are integrated, and a historical trust value

is added to the algorithm. The node's ability to access the network resources is based upon the

trust determination.

The unfair penalization of honest users due to severe pathloss in some locations is considered

in the trust based scheme proposed by [45]. The proposed Location Reliability and Malicious

Intention (LRMI) trust metric has two parts:

1. Location Reliability re�ects pathloss characteristics of the wireless channel.

2. Malicious Intention captures the true intention of secondary users.

Evaluation of sensing reports sent to the fusion center is based on two sources of evidence - the

cell the report was sent from (Location Reliability) and who generated the report (Malicious
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Intention). A trust value is applied to each cell based on the activity of the cell members. The

Dempster-Shafer theory is used to evaluate trustworthiness as related to a mobile node. The

algorithmic combination of the two values help to alleviate the trust devaluation that generally

occurs due to a node's signal pathloss because of its location and mobility, hence providing a

more accurate trust determination.

In the paper [38] the authors present an alternate detection method using two conditional

frequency check statistics (CFC). The statistics are developed under the Markovian model for

the spectrum state and are not adversely a�ected by an increasing number of Byzantines. The

newly proposed CFC enforces two constraints on the attacker's behavior as compared to the

conventional one constraint. This is done by exploring the correlation between the consecutive

spectrum states.

The fusion center evaluates the two CFCs for every sensor and compares the results to

those of a trusted sensor. Di�ering values between a sensor and the trusted sensor indicate the

corresponding sensor is malicious. Consequently, any �ipping attacker that maliciously �ips its

local inference can easily be identi�ed with the CFC. With at least one trusted user the method

can achieve an accuracy rate of greater than 94% in detecting malicious users.

Statistically based analysis schemes that detect malicious users and alleviate the false sensing

observations are proposed in [4] and [50]. The �rst scheme, proposed by [4], allows for an

unknown number of malicious cognitive radios in a network, with the possibility that any node

can suddenly turn malicious. The mathematical basis for sensed data analysis is a modi�ed

version of the Grubb's test for the detection of a single outlier in a normally distributed data

set. Simulations showed that the modi�ed Grubb's test was able to detect any number of

malicious cognitive radios in a network, as long as at least half of the network was made up of

trustworthy nodes. The second paper [50] compares the Dixon's test for outliers, the Grubb's

test for outliers, and the box plot test when applied to sensed data. It is shown that the Dixon's

test out performs the Grubb's test and the box plot test in detecting the presence of a single

bad actor.

The authors of the paper [81] use a statistical attack model to aid in the development of a

Bayesian approach to identifying malicious nodes. Belief propagation is used with factor graphs
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to solve the Bayesian estimation problem and the derivation of an algorithm. The algorithm

is used to estimate channel status and the attack probabilities of the malicious nodes, thereby

identifying the Byzantines.

A technique using the primary user's received signal strength (RSS) is introduced in [123].

The method has been shown to work no matter the ratio of trustworthy nodes to malicious

nodes in the network. The technique compares the location determined by the strength of the

primary user's received signal at a secondary user and reported to the fusion center, to that

calculated using the combined data from the network secondary users at the fusion center. This

comparison is used to determine whether the secondary user node is providing true or false

data.

The authors of [26] present a punishment based mitigation scheme. Using the indirect

punishment method, the malicious user does not need to be identi�ed. There only needs to

occur collisions with the primary user. It is assumed that when such a collision occurs, the

primary user applies a punishment to the entire network. If the attacker can be determined, a

punishment is applied directly. Assuming the bad actor is acting sel�shly, either punishment

will deny the malicious node throughput over the network, and will cause the node to change

its behavior.

Alternatively, the authors of [10] present an incentive, or payment based solution that makes

it detrimental to a node to refuse to forward packets over free channels. The basis of the system is

that a node will receive payment after o�ering a free channel to forward packets for a neighbor.

A transmitting node will pay a neighbor for packet transmission over a channel when that

neighbor's services are required for transmission. A central authority is required to maintain

the credit balance for each node.

2.5.2 Control Channel Saturation

The control channel saturation attack can occur if a cognitive radio is unable to complete

negotiations during the timeframe of the control phase, the radio defers transmission during the

next data phase. This situation may occur when the channel is saturated by a large number

of contending cognitive radios. An attacker can broadcast a large number of packets with the
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intent to saturate the control channel. By sending di�erent types of packets, a malicious node

reduces the risk of detection. Combining the control channel saturation attack with the small

window backo� attack (described in section 2.9.2 �Small Backo� Window�), the attacker may

be able to ensure the malicious node captures the control channel before other users.

The authors of [66] propose using dynamic channelization to address the common control

channel access problem. The authors de�ne an atomic channel as a basic unit of b Hz. Upon

the event of control channel migration, a composite channel is formed from the atomic channels,

centered around a new carrier frequency. The formula f = f 0 + mb provides for the shifting of

the center of frequency from f 0 to f by a multiple of the basic unit b Hz where m = 0, +1, +2,

etc. The bandwidth around f can be obtained by channelization as a factor of kb, such that k

= 1, 3, 5, etc. Figure 2.3 shows the migrated control channel for the case of (m, k) = (4, 3).

The paper [73] presents a method to react to control channel saturation with an alternative

decision making strategy based on rendezvous negotiation to ensure user's communication co-

ordination. In essence, the paper presents an mathematical analysis of the resources required

for channel negotiation for the network based upon the number of secondary users present and

the current channel throughput. When the common control channel usage approaches the point

at which the additional allotment of resources to rendezvous channel negotiation will create a

saturation condition, the network moves to the phase of rendezvous channel negotiation. This

method avoids the situation in which common channel saturation is reached, and there are no

resources available for additional channel rendezvous negotiation. Therefore, the early channel

analysis and start of negotiation prevents the waste of data transmission resources while the

common control channel is saturated.

2.5.3 Control Channel Jamming

Control channels facilitate the cooperation among cognitive radio users. As a single point of

failure, common control channel jamming (CCC) is the most e�ective and energy e�cient way

for an attacker to destroy the entire network system. With common control channel jamming,

receivers are prevented from receiving valid control messages when a strong signal is injected

into the control channel. This results in denial of service for users of the network [63].
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Figure 2.3 Migration of common control channel with (m, k) = (4, 3)

Using dynamic control channel allocation methods combats control channel jamming by

maintaining control communications during the attack. There are two methods for dynamic

allocation of control channels: cross-channel communication [66] and frequency hopping [54].

The authors of [66] take advantage of the fact that successful communications during a

jamming attack can be conducted on another channel not a�ected by jamming signals. Cog-

nitive radio users can continue to transmit on the channel experiencing interference to notify

other network users not experiencing jamming of the new control channel for receiving control

messages. This results in successful communication during jamming by using di�erent channels

for transmitting and receiving control messages with neighbors. Although communication is

maintained, this method incurs high channel switching overhead for radios equipped with a

single transceiver.

In the papers [54] and [61] the authors present methods to mitigate common control channel

jamming for cluster-based ad-hoc networks using hopping sequences. The cluster-head deter-

mines the hopping sequences and identi�es the operating control channels for the cluster. Due

to the nature of the clustering of the network, the network is partitioned into smaller groups.

Therefore, when a jamming attack targets a cluster, the a�ected network area is reduced. The

method presented by [61] di�ers in that no two nodes share the same hopping sequence.

The mitigation tactic presented by [54] hides the control channel location (frequency), and

uses key distribution techniques to allow legitimate users to decrypt the control messages en-

crypted with keyed hash functions. Control messages are repeatedly transmitted on multiple

control channels, so compromised nodes would only have partial keys. Consequently the com-
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promised nodes would be unable to jam all of the control channels. Su�ciently large key

distribution with message duplication would therefore allow continuation of control information

exchange during jamming attacks.

A polynomial based jamming resilient key assignment protocol is presented by [15]. The key

space consists of p * q keys, where p is the number of time slots in a period, and q is the number

of control channels. The control transmission is sent repeatedly over all of the control channels

in each of the time slots in the period. Each node, including the malicious users, is identi�ed by

a unique polynomial. The scheme guarantees access of the nodes to the control channel within

a certain time period. However, since the key space must be su�ciently large, based on the

number of time slots and control channels, it may incur large control retransmission overhead

and delay.

A random key distribution scheme was proposed in [101] and [102] for control channel ac-

cess under jamming attack. As in [15], the keys are used to hide the control channel allocation

in time slots with duplicate transmission on several control channels. The diversity of keys is

large, and so it is probable that authorized users hold keys unknown to compromised users.

Keys are periodically reused in time slots to limit the key space and corresponding storage over-

head. Cryptographic hash functions are used to map the control channel keys to the allocated

frequency and time slot for control channel relocation in a reuse period.

The paper [130] provides a method of control channel jamming avoidance without a pre-

shared key distribution system. The control data is distributed through cluster heads in the

network with each network node belonging to only one cluster. A cognitive radio network with

N nodes requires 2log2N keys, with each secondary user receiving log2N keys based on a unique

binary ID. Each cluster head generates and sends two control signals in every time period i. The

functionsF (ki, i) and F (k′i, i) are used by the cluster head to determine the control channels,

and are known to the cluster nodes. All nodes, including the jammer, receive their assigned

keys. Since no two nodes have a full set of matching keys as relates to each time period, the

jammer will be unable to prevent any node from transmitting in at least one time period.

Referring to the example from [130] in Table 2.3, assume a malicious jammer, node 3. The

jammer can jam the channel determined with k′1 in period 1, the channel determined with k2
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in period 2, and the channel determined with k3 in period 3. However, since none of the other

nodes have the same three keys in the same time periods as node 3, each will be able to transmit

on the assigned control channel in at least one of the three periods.

A stochastic general-sum game called jamming-resilient control channel (JRCC) is presented

in [64]. The game models the interchange among the cognitive radio users and the attacker under

the impact of the primary user. The game objective is to determine the best control channel

allocation strategy to combat jamming using multiagent reinforcement learning (MARL). The

optimal control channel is found when the game reaches the Nash equilibrium.

In each stage of the game, each radio selects an action that maps to a set of selected common

control channels. The nodes receive their rewards by complying with conditions applied to

each common control channel. To facilitate cooperation, each radio broadcasts the control

message according to the conditions of the channel. Each node's strategies are updated with

the parameters received from its neighbors. If the primary user changes the game state, the

radios sense the channels to obtain the new state, and update their parameters, learning rate,

and strategy. In this manner, the JRCC algorithm enables cooperation between the nodes with

low overhead to facilitate common control allocations while adapting to the primary user and

learning rates. Simulation results show that the JRCC algorithm e�ectively combats jamming

in an environment that includes primary user activity.

Table 2.3 Key for 8 Secondary Users with 1 Attacker

Node Unique ID Key

0 000 k1 k2 k3

1 100 k1 k2 k3'

2 010 k1 k2'k3

3 001 k′1 k2 k3

4 101 k′1 k2 k
′
3

5 011 k1' k2 'k3

6 111 k1' k2' k3'

7 110 k1 k2' k3'
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Table 2.4 Attacks By Layer - Network

Attacks

by Layer

Net-

work

Mem-

ber?

CIA Description Citation

Network

Layer

HELLO

Flood

Internal A Node broadcasts HELLO loud

enough so all nodes think it is a

neighbor. Packets are lost since

the node is far away.

[29, 51]

Ripple External A The wrong channel information

is provided so that the other

nodes in the area change their

channel. The attacker's intent

is to cause the false information

to be passed hop by hop and

cause the network to enter a

confused state.

[133]

Sinkhole Internal C, I,

A

Attacker advertises itself as the

best route and does selective

forwarding in which packets are

modi�ed or discarded.

[51, 118,

125]

Sybil Internal A Attacker sends packets as

di�erent identities subverting

the trust system.

[24, 51, 72,

105, 122]

Wormhole Internal C, I,

A

Attacker tunnels messages or

pieces of messages to di�erent

parts of network to replay them.

[44, 51]

2.6 Network Layer

The network layer provides the ability to route data packets from a source node on one

network to a destination node on another network, while maintaining quality of service. It also

performs fragmentation and reassembly of packets, if required. The cognitive radio network

shares security issues with the classic wireless communication networks due to the three shared

architectures of mesh, ad hoc, and infrastructure. Cognitive radio networks also share simi-

larities with wireless sensor networks. These include multi-hop routing protocols and power

constraints. In addition, there are special challenges faced by cognitive radio networks due to
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the required transparency of the network activities to the primary user. Routing in the cognitive

radio network is further complicated by the requirement of the radio to vacate the frequency

when the primary user is sensed as present. Cognitive radio security vulnerabilities are therefore

also inherited from these architectural requirements.

2.6.1 Sinkhole

Cognitive radio networks often use multi-hop routing. A sinkhole attacker takes advantage

of multi-hop routing by advertising itself as the best route to a speci�c destination. This

activity spurs neighboring nodes to use it for packet forwarding. In addition, the neighbors of

the attacker will advertise the o�ender as the best route, creating a �sphere of in�uence� for the

attacker.

The attacker can begin the attack by building a trust base. The attacker can use a higher

level of power so it can send any received packets directly to the base station. It can advertise

that it is one hop from the base station, and forward all received packets appropriately for a

time. After trust has been established, and advertising of the node as the best route has been

propagated through the local area, the perpetrator can begin other types of attacks, such as

eavesdropping.

The attacker can perpetrate the selective forwarding attack by forwarding packets from

select nodes, or modifying or dropping received packets. This attack is particularly e�ective

with mesh and infrastructure architectures since all local tra�c looking to be relayed to another

network have the same destination - all tra�c leaving the local network needs to go through

the base station.

Countermeasures for the sinkhole attack from outside the network are based upon link layer

authentication and encryption. Using authentication, an outside attacker will be unable to join

the network. Since the cognitive radio network will only use members for routing, the attacker

will be unable to advertise as the best route [51].

Countermeasures for the insider attack could be based upon a continually updated trust

determination. The cognitive radio network would need a system to monitor dropped or changed

packets, and report issues to the fusion center. After analyzing the received data, the base
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station would �ood the network notifying its members of the communication issues recently

experienced. It would then drop the attacker as a member of the community.

Additionally, countermeasures to the insider attack can be adopted from wireless sensor

network studies, such as the security-aware ad hoc routing protocol (SAR). SAR is based upon

on-demand protocols, such as Ad hoc On-Demand Distance Vector (AODV) routing or Dynamic

Source Routing (DSR) [125].

With SAR a security metric is added to the route request packet (RREQ) and the route

discovery procedure is modi�ed. Intermediate nodes receiving the RREQ packet determine if

the security metric or trust level is satis�ed. If it is satis�ed, the node processes the packet

and uses controlled �ooding to propagate the packet. If the required security is not satis�ed,

the packet is dropped. A reply packet (RREP) is generated if an end-to-end path can be found

based on the required security attributes. A noti�cation is sent to the sender if such a path

cannot be found. The sender can then modify the trust level in order to �nd a route [125, 118].

With the assumption that a key cannot be determined by nodes that did not receive it from

the base, a malicious node that interrupts the �ow by altering the security metric cannot cause

serious damage. Without the key, the attacker cannot decrypt the packet, and a legitimate

node receiving the packet with an altered security level will drop it [118].

2.6.2 Wormhole

The wormhole attack is closely related to the sinkhole attack. Basically, an attacker tunnels

messages received in one part of the network over a low latency link. The messages are replayed

in another part of the network. In the simplest example, a node situated between two other

nodes forwards messages between the two of them. Wormhole attacks are usually administered

by two malicious nodes that understate the distance between them by relaying packets along

an out-of-bound channel that is unavailable to the other nodes.

A wormhole attack is perpetrated by convincing nodes that are usually multiple hops from

the base station that they are only one or two hops away through the adversary. If the end

point of the wormhole is relatively far from the base station, most nodes in the local network

area will try to use the attacker for forwarding. Packets can then be selectively forwarded to the
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malicious node close to the base station for additional forwarding, or captured for eavesdropping

as they are forwarded [44, 51].

If the adversaries are placed carefully, the attack could result in a partitioned network when

the attackers stop relaying the packets. This action would trigger network routing discovery.

Participating in the discovery e�ort may provide the attacker with additional information that

could be used for other attacks, such as eavesdropping.

One prevention method for the wormhole attack was suggested by [51]. Karlof and Wagner

suggest using geographic routing protocols to forward packets in the network. Such protocols

construct a topology based on routing tra�c physically towards the base station. Using this

routing method, it is di�cult to attract tra�c towards a sinkhole or wormhole. Local nodes

would detect an arti�cial link because they would notice the distance between themselves and

the attacker, or between the attackers, is beyond normal radio range.

The authors of [44] propose using packet leashes to detect and defend against wormhole

attacks. The authors present two types of packet leashes: geographic and temporal. Both

leashes allow the receiver of a packet to detect if that packet traveled farther than the leash

allows.

The geographic leash is used to ensure the packet recipient is within a certain distance from

the sender. For the geographical leash to be constructed, each node must be aware of its own

location, and the clocks of all nodes must be loosely synchronized. Sending nodes include in

their packets their own location and the time the packet was sent. The receiving node compares

this data to its own location and the time of receipt. Assuming the clocks of the nodes are loosely

synchronized, the receiver can compute an upper bound on the distance between the sender and

itself. It is noted that obstacles in the network �eld would not allow distance bounding based

on location data. Therefore, wormholes could still be created, since communication may not be

allowed between two nodes that would otherwise be in transmission range.

The temporal leash provides an upper bound on the packet lifetime. This lifetime in e�ect

restricts the maximum travel distance of the packet. Creation of a temporal leash requires

tightly synchronized clocks, such that the maximum di�erence allowed is t. All nodes in the

network must be aware of the value of t, and it must be on the order of a few microseconds or
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less. When sending a packet, the sender would include in the packet the time the packet was

sent. The receiving node would compare the time to the time received. From this information,

the receiver would be able to determine if the packet had traveled too far based on transmission

time and the speed of light.

Figure 2.4 Wormhole attack

2.6.3 HELLO Flood

The HELLO attack was �rst introduced by [51] as an attack against wireless sensor networks.

However, due to the possibility of using similar routing strategies, the attack can be applied

to the cognitive radio network. The attack is perpetrated by an attacker that broadcasts

a message to all nodes in a network. The packet may be advertising a high quality link to a

speci�c destination. Enough power is used to convince each node that the attacking node is their

neighbor. The nodes receiving the packets assume the attacker is very close due to the strength

of the received signal, when in fact the attacker is a great distance away. Packets sent from the

network nodes at the regular signal strength would be lost. In addition, network nodes may

�nd themselves with no neighbors available to forward packets to a particular destination, since

all nodes are forwarding packets towards the attacker. Protocols that depend upon localized

information exchange between neighbors for topology maintenance are also subject to the attack.

Note that an adversary need not to be able to read or construct legitimate tra�c - the attacker
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needs only to capture and re-broadcast overheard packets with enough power to reach every

node in the network [51].

The HELLO attack can be defended against by verifying the bi-directionality of links before

using the link established by a message received over the same link. Using a base station as a

trusted third party to facilitate the establishment of session keys between parties in the network

can provide veri�cation of bi-directionality. The session key allows the communicating nodes to

verify each other's identity, as well as provides an encrypted link between them. It should be

noted the number of shared keys needs to be limited to prevent the attacker from establishing

a link between every node. An alarm should be raised about the detection of an attacker if one

node claims to be a neighbor to an inordinate number of nodes [29, 51].

2.6.4 Sybil

Local entities that have no direct physical knowledge of remote entities perceive the others

as informational abstractions. These are referred to as identities. A system must have the

capability to ensure that distinct identities refer to distinct entities [24]. Without this ability,

the reputation system used to prevent other types of attacks will be subverted.

An attacker perpetrating the Sybil attack will create a large number of pseudonymous

identities so it can gain a disproportionately large in�uence on the network. In other words,

the mapping of identities to entities is many to one. Pairing the Sybil attack with the launch

of the primary user and Byzantine attacks can allow the attacker to prevent use of the channel

by legitimate users by e�ectively poisoning the decision making process [104]. Additionally, the

misbehavior can be spread amongst the nodes acting as Byzantines, making any one of them

especially di�cult to identify [72].

Validation of each node's identity is the key to defending against the Sybil attack. The

two ways to validate an identity are direct validation, in which a node directly tests whether

the identity of another node is valid, and indirect validation, in which nodes that are already

veri�ed provide validation or refutation for other nodes.

In [24] resource testing is proposed as a method of direct validation. An assumption made

with resource testing is that the resources of the attacker's physical entity are not unlimited.
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Identities are tested to verify that each identity has as much of a tested resource as a physical

device. The authors proposed measuring the resources available for computation, storage, and

communication.

One communication testing example is to broadcast a request for identities, and only accept

replies that occur within a given time interval. To test storage resources, each entity is asked

to store a large amount of unique, incompressible data. The challenging entity keeps small

excerpts of the data to use to verify the challenged identities are storing the data they are sent.

Finally, to test computation resources, each entity is asked simultaneously to solve a unique

puzzle in a limited time.

The authors of [72] suggest another validating method that may be suitable for cognitive

radio networks. For the radio resource testing method, it is assumed each physical device has

only one radio. It is also assumed that a radio can only send or receive on one channel at any

moment. A node can verify that none of its neighbors are Sybil identities by assigning each

of the neighbors a di�erent channel on which to broadcast a message. From the same set of

channels, a channel is then randomly chosen by the challenger on which to listen. The challenger

will hear the message if the neighbor assigned the channel is legitimate.

In [51] a solution involving symmetric keys is suggested. With this solution, every node

shares a unique symmetric key with a trusted base station. The base station also acts as

a trusted third party to facilitate the establishment of session keys between parties in the

network. The session key allows the communicating nodes to verify each other's identity, as

well as establish an encrypted link between them. It should be noted the number of shared

keys needs to be limited to prevent the attacker from establishing a link between every node.

Also, the base station can place a reasonable limit upon the number of neighbors a node is

allowed. An alarm should be raised about the detection of an attacker if one node claims to be

a neighbor to an inordinate number of nodes.

As mentioned in [122], many of the trust and reputation based schemes previously proposed

can be applied to the Sybil problem. Refer to 2.5.1 for descriptions of these techniques. Nodes

with a bad reputation, or those that are proven as untrustworthy, will be punished or removed

from the network, regardless of whether they are truly a distinct node, or a Sybil.
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2.6.5 Ripple E�ect

The ripple e�ect is a new attack that is speci�c to cognitive radios because of their ability

to change channels during communication. Cognitive radios actively change channels to avoid

the primary user and to utilize the channel that will provide the best throughput in the local

area. The ripple e�ect is similar to the primary user emulation or Byzantine attack in that the

wrong channel information is provided so that the other nodes in the area change their channel.

However, the ripple e�ect attacker's intent is to cause the false information to be passed hop

by hop, and in turn cause the network to enter a confused state.

It should be noted that the attack is especially e�ective when the attacker transmits with a

strong signal because of the following:

1. The activity of a primary user is generally greater than that of a secondary user, so the

appearance of a primary user may a�ect several ongoing transmissions of secondary users.

2. Secondary users expend time and energy for spectrum sensing, neighbor discovery, and

channel switching (a few milliseconds) when changing channels.

3. Channel switching of one secondary user may cause a ripple e�ect, or cascaded switching

of multiple secondary users [133].

Countermeasures to the ripple e�ect attack are similar to those for the primary user emulation

and Byzantine attacks. It is essential that primary user presence can be detected and validated.

Similarly, it is essential that the information passed from a neighbor about the presence of the

primary user is also validated. Such validation can ensure the licensed channel is vacated when

necessary, and channel switching will only occur when necessary.

2.7 Transport Layer

The transport layer responsibilities include �ow control, congestion control, and end-to-end

error recovery. The transport layer in the cognitive radio network is subject to many of the

vulnerabilities that plague wireless ad hoc networks.
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Table 2.5 Attacks By Layer - Transport and Application

Attacks

by Layer

Net-

work

Mem-

ber?

CIA Description Citation

Transport

Layer

Key

Depletion

Internal C, I With the great number of

session keys created in a

cognitive radio network, it is

very likely a key will be

repeated. Repetitions provide

an avenue to break the

underlying cipher system.

[67, 86]

Applica-

tion

Layer

Cognitive

Radio

Virus

Both A The cognitive radio network

is vulnerable to viruses that

can e�ect radio function and

learning.

[21, 42]

Policy

Attacks

External A Policy of the radio is changed

or not allowed to be updated,

providing the attacker unfair

spectrum access.

[8]

2.7.1 Key Depletion

CRNs su�er from short transport layer session duration due to high round trip times and fre-

quently occurring retransmissions [86]. This necessarily implies that a large number of sessions

are initiated. Most transport layer protocols, such as secure socket layer (SSL) and transport

layer security (TLS), establish cryptographic keys at the beginning of each transport layer ses-

sion. With the great number of session keys generated, it becomes more likely a session key will

be repeated. Repetitions of a key can provide an avenue of exploitation to break the underlying

cipher system. It has been established that wired equivalent privacy (WEP) and temporal key

integrity protocol (TKIP) protocols used for IEEE 802.11 are prone to key repetition attacks.

Security protocols used below the network layer currently are designed to accommodate

the total number of sessions that are typically created for wireless LANs. The newer Counter
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Cipher mode with block chaining Message authentication code Protocol (CCMP) is designed to

exponentially delay key repetitions [67]. CCMP o�ers enhanced security compared to TKIP by

using 128-bit keys with a 48-bit initialization vector. This architecture minimizes the vulner-

ability of the system to replay attacks. Since the current design is inadequate for the security

requirements of cognitive radio networks, new protocols need to be investigated.

2.8 Application Layer

The application layer is the layer closest to the end user. The user and the application layer

interact with the application software. The application layer is responsible for determining the

resources available, synchronizing communication, and identifying the communicating devices.

Cognitive radios require a greater processing power and memory capacity than the traditional

smart phone. This is because of the extra tasks performed by the cognitive radio, such as

spectrum sensing and learning. Cognitive radios are therefore expected to be the target of

software viruses and malware [5]. Additionally, physical and link layer delays due to spectrum

hando�s, unnecessary rerouting and stale routing due to network layer attacks and delays due

to frequent key exchanges cause degradation of the QoS in the application layer protocols [67].

2.8.1 Cognitive Radio Virus

The cognitive radio network is as vulnerable to viruses as other types of networks and

platforms controlled by software. Viruses are computer programs that can replicate themselves

and spread from radio to radio. For replication, the virus must be able to execute code and

write to memory.

In a self-propagating network like the cognitive radio network a virus can be particularly

devastating. A radio infected with the virus can impose upon its neighboring node a false state,

or a series of transition states. The neighbor will pass along this false state. A particularly

troublesome side e�ect of this propagation is that an arti�cial intelligence (AI) cognitive radio

will erroneously learn to react to this false environment, a�ecting future network decisions.

The authors of [42] present a model for the propagation of a self-propagating AI virus

through a cognitive radio network. Simulation showed that the time taken to infect the whole
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cognitive radio network increased exponentially with network size. Second, it was shown that

the anti-virus performance of static networks is better than the performance of a dynamic

network in the presence of a AI virus. It was also shown that the AI virus propagation speed

increases with an available abundant spectrum resource in the area. However, the variability of

the spectrum does not a�ect the propagation speed noticeably.

In the paper [21] the authors suggest a feedback loop into the network to cause the radios

to re-learn in the case of propagated false environmental information and consequent decisions

and learning. A second approach is to build in logic that will invalidate learned actions that

are known to violate certain principles.

2.8.2 Policy Attacks

There are four main functions of the policy system of the policy based cognitive radio. They

are policy derivation, policy distribution, policy reasoning, and policy enforcement. The paper

[8] describes the security threats associated with each of the functions. The attack on the

policy derivation and distribution functions by spoo�ng, and policy reasoning and enforcement

threats, are described below. The policy attacks via forging occur at a di�erent level, targeting

the application layer; therefore, those attacks are described under the cross layer attacks.

The functions of policy derivation and policy distribution can be disrupted by a malicious

node through spoo�ng the policy administrator. With the spoo�ng attack on policy derivation,

the faked policy administrator feeds the radio policy manager false or misleading policies de-

signed to decrease network performance or cause interference with the primary user. Similarly,

the spoo�ng attack on the policy distribution function allows a faked policy server to supply

misleading policies to the radio's policy engine. An authentication protocol that uses certi�cates

to validate the policy administrator can mitigate these attacks.

The policy reasoning and enforcement attack occurs when a sel�sh policy controlled cog-

nitive device sends false reasoned information to other ordinary cognitive controlled devices in

the area stating there are no available bands for transmission. In this way the sel�sh device

keeps transmission opportunities for itself. Reputation or collaborative decision schemes are

recommended as mitigation avenues.
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2.9 Cross Layer

Cross-layer attacks launched by adversaries target multiple layers. These types of attacks

can a�ect the whole cognitive cycle of spectrum sensing, spectrum analysis, and spectrum

decision. Many of the attacks described earlier can be combined to create cross-layer attacks.

In addition, the same attacks may target one layer, but a�ect the performance at another layer.

Often the cross-layer attack will take place on the physical layer while targeting the performance

of the MAC layer.

Table 2.6 Attacks By Layer - Cross Layer

Attacks

by Layer

Net-

work

Mem-

ber?

CIA Description Citation

Cross

Layer

Jelly�sh Internal A Based on the dual role of the

radio as router with forwarding

behavior. The attack targets

closed-loop �ows responsive to

network conditions like delay

and loss.

[47, 67, 78,

82, 89]

Lion External A Attack utilizes the PUE attack

at PHY layer to disrupt the

TCP. TCP continues to create

logical connections and send

packets. The packets timeout,

and TCP retransmits.

Retransmit timer doubles with

backo� resulting in delays and

packet loss.

[29, 55]

Routing

Informa-

tion

Jamming

Internal A A malicious node causes a

targeted node to initiate

spectrum hand o� before the

routing information is

exchanged.

[67, 134]

Small

Backo�

Window

Internal A Node decreases its own backo�

window size so it has a better

chance of getting the channel.

[116, 131]
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2.9.1 Routing Information Jamming

This attack can take place in a cognitive network with no common control channel. It also

takes advantage of the fact that there is delay during spectrum hand o�. The delay allows

jamming of the routing information among neighboring nodes. The result is the use of stale

routes and incorrect routing of packets.

To start the attack, a malicious node causes the targeted node to initiate spectrum hand

o� before the routing information is exchanged. When spectrum hand o� occurs, the targeted

node stops all ongoing communication, leaves the frequency, determines a new spectrum for

transmission, identi�es neighboring nodes, and informs neighboring nodes of the change in

frequency. The targeted node cannot receive or transmit updated routing information until the

hand o� is complete; this is referred to as deafness. Until the routing information is updated,

the targeted node and its neighbors will use stale routing information. By causing the targeted

node to continuously perform spectrum hand o� just before routing information exchange, the

attack can be extended and made more severe [67].

The paper [134] presents a collision-free resident channel selection based solution (CF-RCS).

A resident channel is selected by each node from the available channel set during network

initialization. It then broadcasts this selection with its neighbors. Nodes are expected to receive

any updates on the resident channel. However, this protocol requires that each cognitive node

is equipped with two half duplex transceivers with one waiting on the resident channel for a

request of control message exchange, and the other sitting on the data transmission channel.

2.9.2 Small Backo� Window

The small backo� window attack is also known as the backo� manipulation attack. In

this attack the attacker manipulates the contention protocol parameters to retain exclusive or

more frequent access to the channel. Sel�sh or malicious users choose a very small backo�, or

contention, window in the e�ort to gain more access to the channel. This attack is feasible

against cognitive radio networks using Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) protocol at the MAC layer.
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The authors of [116] base their proposal on the method presented in the �rst paper, only us-

ing a more re�ned test to compute the di�erence between distributions. A strategy is presented

in which the backo� value of a sender is assigned by the corresponding receiver. Monitoring

of the sender's compliance with the assigned backo� window is also provided by the receiver.

If the sender deviates from the assigned value, it incurs punishment with the assignment of

a larger backo� value for future transmissions. Continued misbehavior can result in the node

from being ejected from the network.

The mitigation described above does not apply to events if collusion occurs between the

sender and receiver. Neither does it apply if the receiver assigns large backo� values to alleviate

contention for its own transmissions. Increasing the number of cognitive radios monitoring the

backo� can help alleviate issues of collusion, or the event of the malicious receiver. It was

suggested that every cognitive radio publish its backo� schedule in advance, or publish the seed

to a publicly known pseudo random number generator used to generate the backo� values. With

this information, neighbors can detect misbehavior of neighboring nodes[131].

2.9.3 Lion Attack

The Lion attack is speci�c to the cognitive radio network. The attack takes place at the

physical/link layer, while targeting the transport layer. In essence, the attacker uses a primary

user emulation attack in order to disrupt the Transmission Control Protocol (TCP) connection.

The attacker can be an outsider or a part of the network.

The attack a�ects the Transmission Contol Protocol by forcing frequency hando�s in va-

cating the channel due to the perception that the primary user is present. When the hand o�

occurs, the TCP is not aware of the switchover. TCP will continue creating logical connec-

tions and sending packets while not receiving any acknowledgments. If no acknowledgments

are returned, TCP considers the segment as lost due to congestion. As a consequence, TCP re-

transmits the segment while reducing the congestion window. This results in delays and packet

loss, reducing throughput.

The attack can become even more extended and severe, becoming a denial of service attack,

if the attacker can anticipate the new channel to which the secondary user will move. If the
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attacker moves to the new channel, and again simulates the primary user, or jams the channel,

the sender will not be able to successfully send data [29].

The authors of the paper [55]present a method of mitigation to the lion attack. Besides

identifying the attack, the authors suggest that cross-layer communication must be established

in order to make the TCP aware of the attack. This communication will allow the cognitive

radio network to halt the TCP connections during frequency hand o�. The TCP parameters

can then be adapted to the connection parameters after hand o�.

Additionally, the control data that is shared by the whole group of cognitive radio network

participants needs to be protected from eavesdropping by the attacker to prevent the attacker

from becoming aware of the current and future actions of the network. The authors of [55]

suggest the use of a common shared secret key. The group key will provide group members the

ability to send encrypted data, decrypt received data, and authenticate itself as a network mem-

ber. Of course, only the current group members should know the group key, so the key would

need to be updated as the membership changes. It is suggested current group key management

(GKM) studies be applied to the cognitive radio network as a solution. Unfortunately, the

cross-layer communication and group key can only mitigate the lion attack since these solutions

cannot stop denial of service or channel degradation due to jamming. In an e�ort to identify

the attacker, the authors of [55] suggest adding a parallel cross-layer intrusion detection system

adapted to cognitive radio networks.

2.9.4 Jelly Fish Attack

The jelly �sh attack and the lion attack are related in that they both target the TCP. In the

lion attack, the degradation of the TCP occurs because of frequent frequency hando�s. In the

jelly�sh attack, throughput is decreased because of out of order, delayed, or dropped packets.

The jelly�sh attack is performed at the network layer, while targeting the transport layer.

The attacker can perpetrate the attack by intentionally reordering the packets it receives and

forwards. TCP has a vulnerability to out of order packets; out of order packets trigger retrans-

missions and degrade network throughput. Dropping a fraction of the packets also degrades

throughput, similar to a sinkhole attack. However, in this variant the packets are dropped intel-
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ligently such that they coincide with the TCP transmission window. This can cause near zero

throughput in the TCP protocol. Additionally, if the malicious node randomly delays packets,

throughput will be a�ected because it causes the TCP timers to be invalid, resulting in network

congestion [67]. Part of the di�culty in mitigating the jelly�sh attack is that the jelly �sh obeys

all of the data plane and control plane protocol rules. Therefore, supportive nodes can hardly

distinguish between the attack, and a congested network [78]. It is possible that successful jelly

�sh attacks can partition the network [89].

In the paper [89] a scheme is presented that exploits the broadcast nature of the wireless

medium for detection and mitigation of jelly �sh attacks. A jelly �sh can be detected by its

neighbors simultaneously when the neighbors are set as promiscuous so they can observe each

other's activities. In the proposed scheme the TCP protocol is altered such that catalyst-helper

packets are sent to check for congestion when the network experiences low throughput. The

packets are supplied with cumulative sequence numbers and a �ow id number. Observing nodes

are able to identify if packets are delayed, dropped, or sent out of order by a neighbor. When

a threshold of such detected misbehavior is reached, the misbehaving node is punished, and

can be isolated from the network. Punishment can include revocation of the certi�cate of the

malicious node by the centralized trusted authority, or isolation of the malicious node by the

dropping of all control and data packets forwarded or originated from the node.

A trust based mechanism is presented in [82] for establishing and managing trust in pure

ad-hoc networks where no base station or other central entity exists and the nodes are not

required to be pre-con�gured. Routing protocols, such as Dynamic State Routing (DSR) and

Ad-hoc On-demand Distance Vector (AODV), are modi�ed to allow establishment of routes

with a certain level of con�dence. Nodes �rst check the trust value at the next hop to ensure it

is equal to or greater than a speci�ed threshold before forwarding packets to the node. If the

threshold value is not adequate, the sending node will try to avoid a path using the suspect

node [82].

A scalable and a robust approach to enforce collaboration in a mobile ad hoc network is

presented by [47]. In this mitigation e�ort, every node observes its neighbors' activities. Each

node computes the ratio of dropped packets in a certain time window for its neighbors that
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drop packets. When a ratio for a node exceeds an predetermined threshold value, the one-hop

neighbors punish the node with isolation for a time period.

2.9.5 Policy Attacks

As mentioned in 2.8.2, the paper [8] describes the security threats associated with each of

the main functions of the policy system of the policy based cognitive radio. The attack on the

policy reasoning and enforcement functions, as well as the policy derivation and distribution

functions by spoo�ng, were already described. The forging policy attacks occur at a di�erent

level, targeting the application layer, and are described here.

In the forgery attack against the policy derivation function, the malicious entity intercepts

communications from the policy administrator intended for the policy manager. The original

policy is replaced with a forged policy resulting in a compromised network and decreased network

performance. Similarly, the forgery attack on the policy distribution function intercepts and

replaces the policy from the policy server intended for the policy engine. The use of certi�cates

or other authentication protocols for identity validation can mitigate these attacks.

2.9.6 A Suggested Multi-Level Security Framework as Attack Mitigation

Trying to address several layers of attack of the cognitive radio network, the paper [91]

presents a multi-level framework for the security of the cognitive radio network. The basis of

the proposal is a new, secure, adaptive MAC protocol called dynamic decentralized and hybrid

MAC (DDH-MAC). This cognitive radio MAC protocol is a hybrid that lies between the static

common control channel using an unlicensed spectrum band (commonly referred to as GCCC)

and the non-GCCC protocols. The protocol creates an adaptive, secure, and energy e�cient

network by tuning its parameters e�ciently and intelligently based on the current situation of

the network. The protocol includes a primary control channel and a backup control channel,

both sent over the white spaces in the spectrum.

Four levels of security are provided by the DDH-MAC protocol. First is the encryption of

the beacon frame. Recipients of the beacon frame apply the relevant decryption scheme to read

the primary and backup control channels.
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The second level of security is the secure transmission of the free channel list (FCL). The

FCL is exchanged secretly over the primary control channel. The chosen control channel is only

known to the cognitive radios in the vicinity. Additionally, all frames are encrypted using the

public key, and only nodes with the private key can retrieve the information.

Dynamic decentrlized and hybrid MAC adds a time stamp to each data transmission as

a third level of security. Data is expected to be received in a certain period of time; if the

data is not received in the speci�ed time period, it is assumed the integrity of the data could

be compromised and therefore untrustworthy. This protocol helps protect the system against

man-in-the-middle attacks.

The last level of security is the dynamicity of the control channel. Since the primary control

channel is sent over a white space, the appearance of the primary user could occur, thus moving

the network communication to the backup control channel. If the primary user also appears

on the backup control channel, the nodes switch to the GCCC to search for a beacon frame.

Any attacker targeting the primary and backup control channels via smart jamming will need

to re-compile their attack strategy whenever the primary users appear. This provides a higher

level of security to the network.

2.10 Conclusion

With our increasing usage of the air as a medium for connecting electronically with the

world, the current spectrum de�ned for commercial and personal usage has become crowded.

The cognitive radio network with software de�ned capabilities will open to users more spectrum

frequencies, and hence, enhanced communication opportunities. However, the new technology

also provides avenues for new attacks perpetrated by malicious or sel�sh users with the desire

to inhibit communication, capture or change the message, or use the spectrum exclusively.

In this paper we have presented the structures of malicious attacks on the cognitive ra-

dio network. We have identi�ed attacks from both the traditional cellular networks and the

wireless sensor network arena that apply. We also presented attack scenarios speci�c to the cog-

nitive radio network architecture and capabilities. Following each attack scenario we presented

mitigating techniques particular to the attack.
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Recent security research on the cognitive radio network has focused on the insider threat

(Byzantine), jamming of the control channel or other portions of the spectrum, and externally

a�ecting spectrum usage by masquerading as a primary user. More research needs to be com-

pleted in the area of secure transport protocols for the spectrum-aware cognitive radio networks,

considering the network's unique characteristics in spectrum management and spectrum mobil-

ity. Additionally, research needs to take place in the realm of cognitive radio ad hoc networks

(CRAHNS), addressing their distinctive security issues related to their network building func-

tions. Finally, further research needs to be conducted in the area of protecting the cognitive

radio function from many of the traditional threats, such as worms, Trojans, and viruses, as

well as new threats that attack the radio's ability to learn.

As the cognitive radio network concept matures and comes to fruition, the network security

sword play of thrust and parry will continue. The true challenge of the security warrior is prior

preparation for the battle. Extensive research and discussion about securing the network will

contribute to a proper framework that can be built into the cognitive radio system.
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CHAPTER 3. DESIGN AND ANALYSIS OF A METHOD FOR

SYNOPTIC LEVEL NETWORK INTRUSION DETECTION

A paper accepted by COMPSAC 2015: The 39th Annual International Computers, Software

& Applications Conference

Deanna T. Hlavacek123 and J. Morris Chang4

3.1 Abstract

Current system administrators are missing intrusion alerts hidden by large numbers of false

positives. We propose an intrusion detection tool that e�ectively uses select data to provide a

picture of �network health�. Our hypothesis is that by utilizing the data available at the node

and network levels we can create a synoptic picture of the network providing indications of many

intrusions or other network issues. Our major contribution is to provide a revolutionary way

to analyze node and network data for patterns, dependence, and e�ects that indicate network

issues. Our �rst contribution in this vein is to present a method based on utilizing the number

of packets sent, number of packets received, node reliability, route reliability, and entropy to

develop a synoptic picture of the network health in the presence of a sinkhole.

3.2 Introduction

Wireless ad hoc networks are self-organizing and self-con�guring infrastructure-less networks

of nodes which are connected by wireless links such as 802.11/WiFi products, wireless sensor

networks (WSNs), and the new cognitive radio network. With the growth in popularity of these

1Graduate Student, Department of Electrical and Computer Engineering, Iowa State University.
2Primary Researcher and Author.
3Author for correspondence.
4Associate Professor Department of Electrical and Computer Engineering, Iowa State University.
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technologies there is a growing demand for intrusion detection systems (IDS) that can operate

with network node cooperation. Current research on intrusion detection systems for wireless

ad hoc systems focus mainly on anomaly or signature detection. These methods are subject to

high false positive rates. With limited time and resources, many true positives are lost in the

overload of the combined true and false alerts. Perhaps the answer is not more data, but the

better use of existing data.

Our motivation for research related to intrusion detection arises from the current lack of

comprehensive research into methods of analysis of selective information in an e�ort to con-

struct a big picture of network security and integrity, termed as �network health�. Our major

contribution is to provide a revolutionary way to analyze node and network data for patterns,

dependence, and e�ects that indicate network issues. Our �rst contribution in this vein is to

present a method based on utilizing packet delivery ratio (PDR), node reliability, route reli-

ability, and entropy to develop a synoptic picture of the network health in the presence of a

simple sinkhole. In order to provide a proof of concept we utilize a simple grid based stationary

network similar to a wireless sensor network. With this simpli�ed �rst example we intend to

show that, although the concept of intrusion detection is not revolutionary, the method in which

we analyze the data for clues about network intrusion and performance is innovative, and can

be a valuable addition to the intrusion detection �toolbox�.

In this paper we will �rst take a look at current research related to intrusion detection sys-

tems designed for wireless ad hoc networks. We then provide a description of our methodology

in network analysis for sinkhole detection, and our results based on simulation data. Last we

will conclude with a synopsis of the process and the impact of our experimental results. The

sections of the paper are organized as follows: Section 3.3.2 describes current research into intru-

sion detection systems and sinkhole detection in wireless ad hoc networks; Section 3.4 presents

the methodology of identifying a sinkhole based on the PDR, node reliability, and system en-

tropy; Section 3.5 presents our results with simulation and data analysis; Section 3.6 provides

comparison of the simulation results to other sinkhole identi�cation methods; and Section 3.7

is the conclusion.
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3.3 Related Work in Wireless Ad Hoc Networks

Wireless ad hoc networks have no router or access point providing infrastructure to the

network. Each node provides routing services, via routing protocols, by forwarding packets to

their neighbors. All nodes in an ad hoc network have equal status in the network, and can

associate with any network device within range. There are three main routing protocols for ad

hoc networks: Optimized Link State Routing (OLSR), Dynamic Source Routing (DSR), and

Ad Hoc On Demand Routing (AODV). OLSR is a proactive, or table-driven, protocol. DSR

and AODV are both on-demand, reactive protocols in which the nodes maintain routing tables.

AODV's routing tables are refreshed according to a timer. We have chosen to use the AODV

routing scheme for our �rst demonstration.

3.3.1 Intrusion Detection Systems

Conventional intrusion detection systems (IDS) are based on misuse detection, anomaly

detection, or deviation from speci�cations. Misbehavior/misuse detection refers to identifying

an attack by comparing collected information against a prede�ned list of �signatures� of known

attacks. Anomaly detection is a close opposite to misuse detection. With anomaly detection,

rather than storing a list of the signatures of known attacks, the system stores patterns of

�normal� behavior for comparison to the current behavior. The third technique, speci�cation

comparison, also compares the current behavior to a stored behavior pro�le. However, the

comparison is against manually de�ned speci�cations, rather than machine learning techniques.

Recently, most of the intrusion detection system research for wireless ad hoc systems has

focused upon the detection of anomalous behavior patterns. In the paper [110] a new detection

scheme called AODVSTAT is presented. The method is similar to other watchdog schemes in

that the nodes watch the packet events and the meta-data in the packets for anomalies in the

protocol. Deviations from the protocol are considered state changes, and trigger an alarming

event. In an e�ort to lower false positive rates using packet features as the basis for anomaly

detection, the authors of [58] conduct careful feature selection from the available set of packet

features for their method. Similarly, [53] uses the entropy of packet features to detect deviations,
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and provides a ranking of alerts in an attempt to lower the false positive rate. The authors of

[108] base their system solely upon the packet sequence number mismatch with the expected

packet sequence number. A con�dence level for each node is calculated based on the number

of interactions with its neighbors. Rather than packet features, the authors of [135] base their

detection on anomalies in tra�c patterns, comparing the current tra�c pattern to a learned

tra�c pattern. Each of these techniques requires either knowledge stored in memory of the

�normal� pattern of behavior, or some type of training before deployment. Attacks that do not

register against the learned normal pro�le can not be detected by these systems. These methods

are also prone to false positives, since hiccups in the network can cause the systems to react

with identi�cation of pattern anomaly.

The authors of the papers [3, 34] both present hybrid detection schemes. The paper [3]

combines anomaly and misuse detection schemes in order to lower the false positive rate gener-

ally seen with anomaly detection, and raise the low detection rate ascribed to misuse detection.

The authors of [34] chose to combine the anomaly and speci�cation based schemes, and uses a

reputation based system in an attempt to lower the false positive rate. However, this method

adds much packet overhead as the nodes in the neighborhoods vote.

In comparison to these methods of intrusion detection, our intrusion detection method is

based not on stored patterns, signatures, or rules, but the e�ect upon the node, route, and

network function. Our system requires no training or pre-placed data concerning the expected

network protocol or tra�c pattern. Therefore, new or craftily tweaked older intrusion methods,

such as a stealthy sinkhole that follows network protocols while selectively dropping packets,

will still be identi�ed, as long as the e�ect of the disruption surpasses the established threshold.

We have no watchdogs observing the network, and so we are not plagued by the high false

positive rates endemic to these methods. Similarly, we are not doing signature comparison, so

we are not plagued by the inability (and associated low accuracy rate) to recognize new attack

signatures. Our system instead is monitoring the state of the network, and reacts when the

state of the whole, or portions of, the network move out of alignment. As in holistic medicine,

we do not only pay attention to the symptom; we analyze the symptoms to explore the network

function and �nd the root cause of the malfunction.
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3.3.2 Sinkhole Detection

We consider sinkholes as Byzantines in the network. Byzantine behavior is displayed by

any action of a member node that negatively a�ects the routing service in the network. Many

such attacks, such as eavesdropping or packet modi�cation, can be prevented by traditional

authentication, integrity, and encryption mechanisms. The malicious actions of a Byzantine

sinkhole may be more complex, such as modifying the hop count, sequence number, or list of

nodes in a path, in order to make itself more attractive as an entry to an ideal route. According

to the paper [6], attacks using these tactics can also be prevented with more sophisticated

authentication and integrity techniques. We therefore consider the stealthy sinkhole that drops

data packets, entirely or selectively, while participating in the routing protocol.

The authors of [6] present a method of identifying a sinkhole with link weights and probes.

However, this method is part of a newly proposed routing protocol that includes double �ooding

during route discovery and the sending of probes to all network nodes for attack discovery. These

steps create additional network overhead. Additionally, in this routing protocol, the sinkhole

will only be discovered if it is acting maliciously during the probing phase. Finally, this work

provides no insight as to how to identify a sinkhole in the accepted ad hoc routing protocols

Ad Hoc On Demand Distance Vector Routing (AODV), Dynamic Source Routing (DSR), or

Optimized Link State Routing (OLSR).

In the paper [57] the authors present a packet drop attack detection method in which the

neighbors adjacent to a communications route monitor the actions of the en route nodes. If a

particular node does not forward a speci�c number of packets in a certain time period, an alert

proclaiming a malicious node is started. The authors make a distinction between greyholes,

which drop only a portion of the packets, and blackholes, which drop all received packets.

Analysis by the authors indicates that only blackholes, and gray holes in the same vicinity,

can be identi�ed. If no blackhole exists, the greyholes will not be identi�ed. Similar to this

method is the watchdog method presented by the authors of [39]. Once again, collaborative

nodes observe the actions of the nodes en route and use a protocol to determine when an alarm

should be sounded. Unfortunately the reliability and e�ectiveness of this method is di�cult to
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determine since the authors have not yet determined the false positive/false negative rates for

the protocol.

Several papers rely upon the sinkhole bucking the routing protocol by changing the sequence

numbers. The sinkhole identi�cation schemes described in the papers [22, 33, 46] are therefore

not e�ective in identifying a stealthy sinkhole that does not change the packet sequence number.

The authors of [22] additionally use the previous image ratio to identify the sinkhole. In the

previous image ratio method the received routing packets are compared to other stored routing

packet images. However, this method relies upon the sinkhole having forged the route records

in their route request packets. Therefore, if a stealthy sinkhole has not forged the route records,

the sinkhole will not be identi�ed by this method.

A third indicator of a sinkhole identi�ed and used by the authors of [22, 46] is the route add

ratio. The route add ratio is the number of routes that traverse a particular node divided by

the total number of routes added to the node's routing table. Unfortunately, [46] only mentions

the idea of the route add ratio, but does not explain how the ratio is used. In [22] a network

node is speci�ed to keep a counter for each node in the network, and increment the counter

when a route passing through the node is added to the cache. This presents the issue of one

node storing data for all of the nodes, and additional messages created and sent to the assigned

node when any network node adds a route to its cache. The data related to this study did not

provide a method to determine the message overhead related to this technique.

In comparison to these studies, our method does not rely solely upon the sinkhole cheating

on the routing protocol. Therefore, a stealthy node will still be identi�ed by its e�ect on the

network, rather than missed due to it not sending signals through the routing protocol. Also,

even though there are additional messages included with our sinkhole identi�cation scheme, no

additional messages are required before the possibility of a sinkhole is discovered. The overhead

of messages m related to sinkhole identi�cation is related to the number of hops from the

detecting node to the sinkhole and is very small. We analyze the number of messages required

in Section 3.6.3.
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3.4 Methodology

The methodology of the sinkhole identi�cation scheme consists of two parts. First, the

detection phase, in which one or more nodes are alerted that there is a possible sinkhole in the

network. Individual nodes calculate their neighbors' reliability values, and are alerted when

a reliability crosses a threshold. The second phase is the sinkhole identi�cation phase and

involves querying speci�c network nodes for data they have about their neighbors. We make

the assumption that each node is aware of its immediate neighbors. However, the nodes may

not immediately be aware of the position of its neighbors relative to itself or each other.

Algorithm 1 Calculations of Neighbor Reliability

//Done for each neighbor node (Y) around the starting node A

//routeRel: route reliability

//neighRel: neighbor reliability
1 : for each neighNode(Y)
//Calculate route reliability for routes X through neighNode Y
2 : for each route(X) (Z nodes along route)
3 : for each node(Z) on route X
4 : routeRel(X) = routeRel(X) * pdr(Z);
5 : saveRouteRel(XZ) = routeRel(X);
6 : get next node pdr(Z) on route(X);
7 : get next route(X);
//Calculate neighbor reliability using all routeRel(X)
8 : for each routeRel(X)
9 : neighRel(Y) = neighRel(Y) +

(routeRel(X) * [log2(1/routeRel(X))]);
10: saveNeighRel(X) = neighRel(Y);
11: get next routeRel(X);
12: get next neighNode(Y);

3.4.1 Detection Process

In the neighbor reliability method of determining the health of the network, each node

counts the number of packets sent and received along each route. The nodes calculate the

packet delivery ratio for the stored routes by relating the number of packets received along the

route to the number of packets sent along the route. This PDR is also referred to as the �route

reliability�, and represents the cumulative reliability for each node along a route. From this data,

the nodes each determine their �neighbor reliability� by calculating the entropy for all known

routes through the neighbor node. Neighbor reliability refers to a single node's perception of
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the probability of a packet following any route through a single neighbor to successfully reach

the intended destination. The Shannon entropy equation, used to estimate the diversity of the

system, is applied. The formula follows, where p(x) is the route reliability:

H(x) = −
∑

p(x)log2p(x) =
∑

p(x)log2(1/p(x)) (3.1)

Algorithm 1 describes the process to obtain the neighbor reliability values. Note that in

simulation we use the probability that a packet will reach its destination when routed through

an individual node for the PDR of node Z. This was substituted for the true PDR of a route

that would be known in a live network.

Using this method, assuming a stationary MANET grid of nodes with one node per grid

space, each node in the grid will have up to eight di�erent neighbor reliability values, each value

from the perspective of one of its (up to eight) neighbors. Additionally, each node will have

up to eight neighbors for which it has determined neighbor reliability values, comprising the

neighbor reliability set. Using its neighbor reliability set, each node calculates the standard

deviation of the set. A lower boundary is calculated by subtracting the standard deviation from

the mean of the set; the boundary acts as a threshold. The use of the standard deviation was

determined experimentally; one standard deviation provided a proper boundary to determine if

the neighbor reliability was low enough to indicate the possibility of a sinkhole when compared

to the neighbor set. The lower boundary in a live network will need to be determined based

upon the particular network. This process provides the node the ability to observe the current

state of the network surrounding it, and helps identify anomalies based on the current network

state. If the neighbor reliability of any neighbor crosses the threshold, the node is alerted

that there may be an attacker in the network. Note that until this point, all calculations and

decisions are made upon data collected by the node without additional messages or queries to

the network or neighbors. Therefore, unless an alert is signaled, there is no impact upon the

network throughput for this method.

The example in Figure 3.1 shows several nodes with reliability values applied to each node

by its neighbors. The values in the �gure are charted according to compass coordinates from

the perspective of an individual node. For example, Node W applies the values of 5.443 to node
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AA, 5.324 to node BB, 5.436 to node CC, 5.276 to node X, 5.443 to node V, 5.393 to node R,

5.441 to node Q, and 5.329 to node S. These values comprise node W's neighbor reliability set.

Conversely, node W is applied the values of 0.1322 as perceived by node AA, 0.1315 by node

BB, 0.1331 by node C, 0.1333 by node X, et cetera.

Figure 3.1 Neighbor Reliability Plot (values * 10e-6)

3.4.2 A Proof

We consider a simple grid network of nodes with a sinkhole in the center (Figure 3.2). Let

a be the percentage of successful packet delivery for regular nodes; it is assumed regular nodes

drop few packets. The sinkhole drops a large number of received packets; let the percentage of

successful packet delivery for the sinkhole be b. The network uses AODV routing, utilizing the

shortest route. We make the following assumptions:

1. Each node is aware of all of its eight neighbors.

2. No route will pass through more than one of the source node's neighbors, and no more

than two neighbors of any node along the route.

3. All routes are of three hops.

4. Percentage a >�> b.

A source node (src1) located next to the sinkhole will have seven neighbors with routes that do

not traverse the sinkhole. The source node will therefore experience a packet delivery percentage

of a. The last neighbor will have all packets routed through the sinkhole, experiencing a packet
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delivery percentage of b. The average percentage of packets experienced by this node will

therefore be:

PDRsrc1 = (7a+ b)/8. (3.2)

A source node (src2) two hops from the sinkhole will have more routing choices that do

not include the sinkhole. In the described network, �ve of the neighbors will have no routes

through the sinkhole. Of the three neighbors left, two will each have four of their nineteen

routes traversing the sinkhole (see Figure 3.2). Let this be represented by PDR31/33 since the

description applies to both of these neighbors in the example. One neighbor will have three of

its thirteen routes passing through the sinkhole (Figure 3.3). Let this be represented by PDR32.

The PDR experienced by src2 is therefore represented by the following:

PDRsrc2 = 5a+ PDR31/33 + PDR32 (3.3)

where

PDR31/33 = [2(15/19)a+ 2(4/19)b]/8 (3.4)

and

PDR32 = [(10/13)a+ (3/13)b]/8 (3.5)

or

PDRsrc2 = [7.53a+ .65b]/8. (3.6)

Likewise, a source node (src3) three hops from the sinkhole will have more routing choices

that do not include the sinkhole. In this scenario seven of the neighbors do not have any routes

through the sinkhole. One neighbor has three of its thirteen routes traversing the sinkhole. We

get the following equation:

PDRsrc3 = [7a+ (10/13)a+ (3/13)b]/8 (3.7)
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which is equivalent to:

PDRsrc3 = [7.77a+ .23b]/8. (3.8)

Since a >�> b, we remove the terms with b from the equations, resulting in the relationship

PDRsrc1< PDRsrc2 < PDRsrc3 since

7a < 7.35a < 7.77a (3.9)

Figure 3.2 Route Example from SRC2 (Node 33)

Figure 3.3 Route Example from SRC2 (Node 32)

3.4.3 Sinkhole Identi�cation Process

The sinkhole identi�cation process works similar to water in a reservoir. When the water

reaches a higher point in the reservoir, it stops moving forward and splashes back. In our

identi�cation process, the query messages will move towards the lowest reliability point and
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stop at the higher value nodes on the other side of the lowest point. Once the higher nodes are

reached, the �splash� will be a broadcast message �ooded through the network reporting the

identity of the sinkhole.

In the identi�cation process, we assume that each node is aware of its immediate neighbors,

although not necessarily their relative positions. We call this set of neighbors �ring one� as

related to the alerted node. When a node determines that a threshold has been crossed, it

broadcasts a query to its immediate neighbors (ring one) for their neighbor lists. The query in-

cludes the alerted node's assignment of L1, which is the node with the lowest neighbor reliability

from the perspective of the alerted node. Only the neighbors with neighbor lists that include

L1 broadcast a reply to the query. Node L1 was able to receive the information sent by its own

immediate neighbors in response to the query made by the alerted node. Node L1 assigns L2

to its neighbor with the lowest reliability value (L2 will most likely, but not necessarily, be in

ring two), and sends this assignment along with a broadcast query for neighbor lists. Only the

neighbors with L2 in their neighbor lists that have not already broadcast their neighbor lists

during this identi�cation process round reply to the query. (Algorithm 2)

This process continues until we have reached the area around the sinkhole, ring n. The

nodes queried in ring n will include the sinkhole and some of its immediate neighbors. At

this point the sinkhole may or may not participate in the process. If it does participate, the

sinkhole will continue the process by identifying Ln-1. Ln-1 will then identify the sinkhole as

its neighbor with the lowest reliability value. The sinkhole may not acknowledge, nor realize,

it is the sinkhole. Therefore, the sinkhole (call the sinkhole S ) assigns LLOW (call this node

X ) to one of its neighbors. Node X compares its neighbor reliability values and re-identi�es

the sinkhole (S) as its neighbor with the lowest neighbor reliability. To attain con�rmation, X

broadcasts a query to its neighbors for a �vote� as to which of the two nodes they identify as the

node with the lowest value. Only nodes with both nodes S and X as neighbors reply. The node

requesting the vote will �ood the network with the identi�cation message naming the sinkhole.

If the sinkhole does not participate, the node (Ln-1) that sent the message to the sinkhole and

its neighbors will note that there have been no messages from Ln in time T. At this point, Ln-1

will resend a message to the sinkhole and neighbors common to the requesting node and the
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Algorithm 2 Identi�cation of Sinkhole

1 : initialize row, col, x to 0; AlertedNode is L0 at [0,0]
3 : Lx identi�es Lx+1 as neighbor with the lowest neighbor value
4 : Lx broadcasts query for neighbor lists along with Lx+1 identi�cation
5 : x=x+1

// if Lx participates in the discovery process it will automatically query neighbors
6 : while sinkhole not found
7 : Lx identi�es Lx+1 as neighbor with the lowest neighbor value
8 : if Lx+1 == Lx-1 OR Lx+1 == Lx-2 AND if other shared neighbors that have not yet been polled
exist
9 : immediate neighbors (not Lx-2, Lx+1, or Lx-1) vote to determine which of the compared nodes
has the lowest value
10: node that is not determined lowest value alerts network of identity of sinkhole
11: else if y > 2 AND Lx+1 == Lx-y
12: Lx-1 removes Lx neighbor value from neighbor list
13: x = x-1 //this is a loop with no positive sinkhole determination
14: else if Lx queries neighbors for THEIR neighbor list
15: Lx+1 receives neighbor lists from immediate neighbors and determines relative placement of
immediate neighbors
16: else if Lx-1 does not hear Lx query neighbors in time T
17: Lx-1 queries immediate neighbors shared with Lx (Lshared_1 and Lshared_2) for their neighbor
lists and neighbor values
18: Lx-1 determines relative locations of neighbors shared between Lshared_1 and Lshared_2
19: if neighbors shared include only Lx and Lx-1
20: Lshared_1 and Lshared_2 send queries for neighbor lists and reliabilities
21: neighbors with lists that include Lx respond to query
22: Lshared_1 and Lshared_2 provide query information to Lx-1
23: Lx-1 uses neighbor locations and neighbor values to determine if Lx has lowest local neighbor
value
24: if Lx has lowest neighbor value as reported by surrounding immediate neighbors
25: Lx-1 alerts network Lx is a sinkhole
26: else

27: Lx-1 removes Lx neighbor value from neighbor list
28: x = x-1
29: x=x+1

30: end while

non-responding (possible) sinkhole, requesting the reliability values for all of their neighbors. If

the neighbor lists received do not include at least three neighbors in common, additional queries

will be sent by the neighbors of Ln to their neighbors. The additional information received will

be provided to Ln-1. Analyzed together, this information will con�rm that the node with the

lowest reliability in ring n is indeed the sinkhole, and Ln-1 will broadcast the message identifying

the sinkhole to the network.

The action taken by the network upon identi�cation of the attacking node is dependent upon

the system protocol, and is beyond the scope of this paper. However, there are basically two

types of actions: isolation of the node, or incentivation for proper network behavior. Isolation
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means the suspect node may be ignored by the network when it advertises access to routes to

any destination, and so ostracized from the network. Incentivation means allowing the suspect

node to send its own data only at the rate that it is providing to the network, and this allowed

rate increases as the misbehaving node decreases the number of dropped packets and increases

its packet delivery ratio. It must be recalled that although we have referred to the suspect node

with low reliability an attacker, it may be a sel�sh node, or just a malfunctioning node. This

method of identifying the unreliable node does not determine intent.

Table 3.1 Network Parameters

Node Parameters Value

Number of Nodes 30

Node Placement 6 by 5 grid

Simulation Duration 1500 seconds

Routing Protocol AODV

Type of Stations MANET

Node Speed 0 kts

Transmit Power .0001 w

Packet Reception Power Threshold -95 dBm

Bu�er Size (Member Nodes) 256000

Bu�er Size (sinkhole) 415

Route Length 5 nodes, 4 hops

3.5 Simulation

To obtain simulated network data we chose OPNET Modeler 17.5, a commercially available

tool set used by the communications industry for modeling, simulation, and analysis of commu-

nications networks and applications. The initial network topology is a six by �ve grid mobile

ad-hoc network (MANET). The size of our network was chosen based on a study of the e�ects

of insider attacks by the authors of [28]. According to the study, thirty nodes is the ideal size

of network for a sinkhole to operate e�ectively.

In the initial study the nodes are stationary and the parameters for the member nodes

are uniform. Tra�c supplied by the OPNET MANET model is used. Each node is a tra�c

generator. No specialized tra�c is added, and no additional noise is added to the network.
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Ad hoc on demand (AODV) routing is chosen as the routing protocol. Route length for the

identi�cation method is limited to �ve nodes, with four hops. This limitation was imposed to

provide a simple initial standard for comparing route reliability results. The routes used for the

calculations are not all inclusive. Therefore, not all neighbors may play a part in determining

the calculated neighbor reliability value. Parameters for the member nodes are shown in Table

3.1.

The bu�er size for the member nodes was left at the OPNET MANET default of 256000

packets. The bu�er size for the attacker was lowered to 415 packets to simulate a sinkhole.

This bu�er size was chosen because it allowed packets to be dropped without stopping all

tra�c routing through the attacking node. The number of dropped packets at this setting

impacted signi�cantly the amount of data tra�c sent by the attacking node. Normal nodes

sent an average of 903.5 packets over the 1500 second simulation period, as opposed to the 17.3

packets sent by the sinkhole. Note that the 1500 second simulation period and the 15 second

intervals were arbitrary. Since the sinkhole e�ect is recorded almost immediately and the e�ect

is nearly constant over the entire period using the simulation parameters described, the interval

parameters for recording the data can be optimized. Subsequent tests showed that the sinkhole

could be detected in the �rst �fteen seconds of the commencement of network tra�c. Data

collected per node included:

1. At each node, the number of packets received per second in �fteen second intervals.

2. At each node, the number of packets sent per second in �fteen second intervals.

3.5.1 Discovery and Identi�cation Processes Using Simulation Results

In this context, the packet sent ratio (PSR) is the ratio of the number of data packets sent

to the number of data packets received at a particular node. To �nd the neighbor reliability in

our simulation, we �rst calculate the route reliability by multiplying the PSRs for each node

along a route, starting at the �rst hop (as opposed to the sending node). Next we calculate the

entropy of all known routes through the neighbor node. Plotting the neighbor reliability values

on a plot of the network shows that the lower values tend to be centered around the sinkhole.
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Table 3.2 Node G's Neighbor Reliability

Starting

Node: G

Cumulative Reliability:

0.000258769

Average Reliability:

4.31282E-05

Reliability

Neighbor

List

A B C H L M

Reliability

Value List

3.05418E-06 2.95563E-06 3.05779E-06 2.21184E-06 2.62348e-06 2.2152E-06

Entropy

Per

Neighbor

List

5.59549E-05 5.42868E-05 5.60144E-05 4.07334E-05 4.82379e-05 4.07903E-05

For an example, we assume node G is the �rst node to identify a possible attacker. From

the reliability calculations (Table 3.2), node G identi�es neighbors H and M as having entropy

values below the threshold value for node G. Node G currently has a view of the network that

includes its immediate neighbors, although node G may not know the relative locations of the

neighbor nodes at this time. Node G identi�es node H as the neighbor with the lowest reliability

value. Node G broadcasts this assignment and queries its neighbors for their neighbor lists.

Only G's neighbors that share H as a neighbor broadcast their neighbor list; therefore, nodes

L, M, C, and B broadcast their lists. Upon receipt of the data, node H places the nodes on the

grid relative to itself (3.4). Node H reports it's neighbor with the lowest neighbor reliability

value to node M, and queries its own neighbors for their neighbor lists. Again, only the neighbors

that share node M as a neighbor broadcast their neighbor lists. From this information, node M

is able to place itself and its immediate neighbors on the grid. Node R is assigned as having the

lowest neighbor reliability value by node M. Neighbors that share node R as a neighbor make

their neighbor list reports. Node R identi�es node W as the neighbor with the lowest reliability

value, continues the process, and node W identi�es node X. Node X then identi�es node W

as the neighbor with the lowest reliability. Since nodes W and X identi�ed each other, shared

neighbor nodes �vote� for the neighbor with the lowest value. Since W has participated in the

process, and it has been identi�ed as the neighbor with the lowest reliability in the local area,

node W (or, if needed, node X) announces to the network W is the sinkhole.
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Table 3.3 Partial Table of Neighbor Reliability Values (*10e-5

Node H Neighbors L N M

Reliability Values 4.73898 5.32743 3.51034

Node M Neighbors Q R S

Reliability Values 5.56492 1.90244 5.39725

Node R Neighbors V W X

Reliability Values 5.29084 .130932 5.31013

Node W Neighbors X BB CC

Reliability Values 5.27565 5.32431 5.43592

Node X Neighbors W BB DD

Reliability Values .133259 5.23300 5.29058

We borrow a technique from weather forecasting to analyze the plot by drawing isopleths

for the reader to indicate the levels of entropy in the network. This provides a human-readable

synoptic view of the network at the current time. As can be noted in Figure 3.4, the sinkhole

has been identi�ed as the lowest area of reliability in the network. Even though the immedi-

ate neighbors to the sinkhole node are not dropping packets, their proximity to the sinkhole

a�ects their reliability value because of the number of routes they have stored for use in their

routing table that traverse the sinkhole. Nodes farther away from the sinkhole have their relia-

bility values less a�ected by the attacker because they tend to have fewer routes traversing the

sinkhole.

Figure 3.4 Synoptic analysis of neighbor reliability
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3.5.2 Data Analysis - One Sinkhole

Analysis of the data set shows that every node except node E resulted in an alert due to at

least one of the neighbor nodes having entropy less than the one sigma lower boundary threshold.

It must be noted that node E did not have any routes traversing node W (the sinkhole) in its

routing table. Every other node had at least one route traversing node W. Also, starting the

identi�cation process from every node (except E) found W to be the sinkhole.

There are cases in which the identi�cation process may not be initiated and the sinkhole not

found. However, as the network matures and nodes store routes with the sinkhole traversed,

the identi�cation process will be initiated. The special cases are listed below:

1. If a node exists with no routes stored that traverse the sinkhole, the sinkhole will not be

detected by this particular node.

2. If a node exists with all routes traversing only one neighbor there will be no detection

alert by this node. This is due to the method of calculating the threshold.

3. If a node exists with with all routes traversing only two neighbors the detection process

will not be started. This is due to the method of calculating the threshold.

3.5.3 Additional Cases Investigated

In the case analyzed above we showed that one attacker acting as a sinkhole can be identi�ed

in the stationary grid network of thirty nodes. Since the sinkhole was alerted upon by all but

the sinkhole itself and one additional node, the chance of sinkhole discovery was 93% (based

on the number of nodes that are alerted to a sinkhole in the network by the detection process

divided by the number of nodes in the network - in this case, 28/30 = 93%). This is because

the e�ect of the sinkhole extends through the network for routes at least �ve nodes long. The

following cases investigate whether more than one sinkhole can be identi�ed in the network of

thirty nodes.
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3.5.3.1 No Sinkholes in the Network

In the case of no sinkholes in the network, we would like to have no alerts, and to �nd no

suspects. However, since no network is homogenous (including the OPNET MANET network

set up as described), it is likely that there will be at least one node in a neighborhood of nearly

homogenous transmitting neighbors that will be falsely identi�ed as a sinkhole. Using the

algorithm described based solely on one standard deviation as the threshold, in a network with

no intentional sinkholes placed, there were twenty-six nodes that were alerted to the possibility

of a sinkhole. Four false positives were identi�ed. This result portends the possible result that

after identi�ed true positives (sinkholes) in a network, the process may then �nd one or more

false positives.

3.5.3.2 Two Adjacent Sinkholes in the Network

In this case, we have included two adjacent sinkholes operating in the same area of the

network (nodes V, W). Experimental results show that all but one node was alerted to the

possibility of a sinkhole in the network, and nine nodes have two neighbor reliability values

that indicate the presence of one or more sinkholes. Since the sinkholes are adjacent, the

identi�cation process �rst �nds the sinkhole with the lowest value. After the identi�ed sinkhole

is removed from the network, as well as all routes in route lists incorporating the sinkhole, the

remaining nodes automatically re-calculate the neighbor reliability values. The second sinkhole

is identi�ed by the identi�cation process since it now has the lowest neighbor reliability value

in the network.

In this instance, node DD again was not alerted to the possibility of a sinkhole. This time

node DD had one neighbor reliability value that was high because it had no routes with sinkholes

included. The other two neighbor reliability values were nearly equal, lower, but fairly close to

the higher value. Therefore, the method of identi�cation and alerting based on incorporating

the standard deviation did not indicate an outlier based on our thresholding scheme.
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Table 3.4 Neighbor Lists for Nodes K and L

Starting

Node
Neighbors Number

Routes

with

Sink-

holes vs.

Number

Routes

Neighbor

Reliability

Value

Node K

Neighbors

F 1/3 3.999E-05

G 2/6 3.882E-05

L 3/9 3.958E-05

P 3/8 3.885E-05

Q 3/9 4.073E-05

Node L

Neighbors

F 0/2 5.924E-05

G 2/4 2.961E-05

H* 3/4 1.592E-05

K* 2/3 2.258E-05

M 1/11 5.435E-05

P 0/1 5.886E-05

Q 3/8 3.888E-05

R 1/8 5.245E-05

3.5.3.3 Two Randomly Distributed Sinkholes in the Network

There are two sinkholes in the network located near opposite corners of the grid (nodes I, V).

Experimental results show that all but two of the other grid nodes were alerted to the presence

of at least one sinkhole in the network by their neighbor reliability values. After applying the

sinkhole identi�cation process as described in this paper, each sinkhole was correctly identi�ed

by the alerted nodes.

Two of the nodes each have two neighbor reliability values that indicate the existence of

one or more sinkholes. The �rst node, S, has two neighbors whose reliability values cross the

threshold; both of the neighbors' reliability scores are a�ected by their routes through the same

sinkhole. The single sinkhole was correctly identi�ed.

The second node (L) also has two neighbors (H, K) with reliability values that indicate the

presence of a sinkhole, as denoted by the asterisks in the Table 3.4. However, each neighbor's

values are a�ected by routes through a di�erent sinkhole. Therefore, if we follow the identi�-
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cation process in which we �rst place and query the neighbor with the lowest reliability value,

one sinkhole is identi�ed by node L. After the �rst identi�ed sinkhole and all associated routes

are removed from the network route lists, and the neighbor reliability values are re-calculated,

the second sinkhole is identi�ed by node L. However, after the associated routes are removed

and the process followed a third time there were two false positives identi�ed in the network.

The two nodes that gave null results (did not indicate the presence of a sinkhole) were K

and DD. We would expect nodes that have no routes through the sinkholes to be unable to

alert upon the possibility of a sinkhole. However, both of these nodes have routes traversing

each sinkhole. The neighbor reliability values did not alert these nodes because none of the

values crossed the calculated threshold for the node. Investigation shows that in both cases, the

lists of routes through every immediate neighbor included nearly half of the routes traversing

a sinkhole, and the other half of the routes not traversing a sinkhole. Therefore, the mean of

the route set for each neighbor of a node falls between the values reported for routes with no

sinkhole, and the values for routes with a sinkhole (Section 5.2.1 number 4). (It should also be

noted that node K is at the edge of the network, and node DD is in a corner of the network.

Although this placement does not guarantee failure in identifying a sinkhole, it does lower the

possibility due to the smaller number of neighbor nodes for comparison. However, the success

or failure also depends upon the routes contained in the routing table of the node.)

The result is no values fall outside of the threshold, and the node does not receive an alert.

In essence, by the perspective of these two nodes, routes including sinkholes are as common in

the network as routes with no sinkholes, and therefore will not be identi�ed as outliers. This

argument foretells the results we will see in future cases with increased numbers of sinkholes.

The Table 3.4 shows the neighbors of nodes K and L with their neighbor reliability values

and the ratio of the number of routes that traverse the neighbor and a sinkhole to the routes

that do not go through a sinkhole. In this case, node K has no neighbors for which the number

of routes through a sinkhole is greater than the number of routes with no sinkhole nodes. L has

two such neighbors - H and K (note that here we are not looking at node K, but as node K as

a neighbor of node L). Nodes H and K both met the conditions we set for alerting node L of a

possible sinkhole in the network. Node K did not receive any such alert.
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3.5.3.4 Multiple Randomly Placed Sinkholes in the Network

Multiple randomly placed sinkhole nodes were placed in the network. Table 3.5 shows the

number of sinkholes, alerts, sinkholes identi�ed, sinkholes missed, and false sinkholes identi�ed

in the thirty node network. It is important to note that this table represents the number of node

members that would alert upon a sinkhole and start the discovery process. However, with a

protocol in place to determine which alerted node would take action, the other nodes would not

initiate the identi�cation process. As a consequence, the number of falsely identi�ed sinkholes

appears quite high. This is because several nodes would alert upon the same false node.

Table 3.5 shows that as the number of sinkholes increased, the number of nodes receiving

alerts decreased. This was expected, because as sinkholes become more numerous, using the

algorithm based on the standard deviation, localized neighborhoods of the network will see the

results of the sinkholes as a norm, rather than an anomaly.

In this network we were able to identify all of the sinkholes in networks with six or less sink-

holes. In the cases of more than six sinkholes, at least one sinkhole was left unidenti�ed. After

the sinkholes were identi�ed, the sinkholes and associated routes were removed from the routing

tables and the neighbor reliabilities re-calculated. The identi�cation process was repeated until

there were no alerts in the network, or until any alerts were deemed non-productive because of

loops in the process (i.e. node A points to node B as the neighbor with the lowest neighbor

reliability value, who points to node C, to node D, to node E, to node A). In all of the networks

with 8 or fewer actual sinkholes randomly placed in the network at least one false positive was

identi�ed.

3.5.3.5 New Criteria for Threshold

The original threshold criteria allowed too many false sinkholes to be identi�ed. Such

identi�cation could result in friendly nodes being excluded from the network. After reviewing

the data for every case, an additional threshold was added to the algorithm. This threshold

excluded nodes with neighbor reliabilities that were not at least one order of magnitude less

than the average of the local neighbor reliabilities from causing alerts. The results seen in Table
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Table 3.5 One Standard Deviation as Threshold

Sinkholes

In

Network

Alerts Sinkholes

Identi-

�ed

Sinkholes

Missed

False

Sink-

holes

0 26 0 0 4

2 28 2 0 2

4 25 4 0 >1

6 20 6 0 >1

8 10 7 1 >1

10 6 6 4 0

15 2 6 9 0

18 0 0 18 0

3.6 show that there were no false positives reported when using the new threshold. For the

networks with four sinkholes or less, all of the sinkholes were properly identi�ed. For networks

with six, eight, or ten sinkholes, up to two additional sinkholes were unidenti�ed when compared

to the results in the Table 3.5. Since it is expected that it is highly unlikely there will be more

than one or two misbehaving nodes in a network of thirty nodes, the tradeo� when using the

enhanced threshold criteria is for less disruption in the network due to the removal of innocent

nodes.

Table 3.6 Experimental Results - Additional Threshold Criteria

Sinkholes

In

Network

Alerts Sinkholes

Identi-

�ed

Sinkholes

Missed

False

Sink-

holes

0 0 0 0 0

2 13 2 0 0

4 14 4 0 0

6 12 5 1 0

8 8 5 3 0

10 3 4 6 0

15 1 0 15 0

18 0 0 18 0
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3.6 Analysis of Network Overhead

The method presented does not depend upon stored patterns, signatures, or rules. It does,

however, require limited storage (s) of additional collected data and a small amount of energy (e)

for calculations. Messages (m) are only required for identi�cation when a sinkhole is detected.

Therefore, the overhead o can be described by the equation:

o = s+ e+m. (3.10)

3.6.1 Storage

The AODV routing tables already house information about the �next hop� to known desti-

nations. The �next hop� is an immediate neighbor. Therefore, the data we require to be stored

in the routing table can be associated with the �next hop�, or neighbor. We assign ss as the

storage space used to hold the number of packets sent and sr as the storage space for the number

of packets received. After the calculation for the neighbor reliability is completed, it is stored

in snr. The additional storage space s required by a network of i nodes, each with b neighbors,

can therefore be represented by the equation

s = ib(ss + sr + snr). (3.11)

3.6.2 Energy

The detection and identi�cation processes rely upon the calculation of the packet delivery

ratio and neighbor reliability values assigned to the b neighbors of the i nodes in the network.

The energy required for the packet delivery ratio calculation is represented by epd. Similarly, the

energy required by the neighbor reliability calculation is represented by enr. Additional energy

is required by the creation (emc) and distribution (emd) of the identi�cation messages m. The

total additional network energy consumption e required by the detection and identi�cation

processes can therefore be described by the equation

e = m(emc + emd) + ib(epd + enr). (3.12)
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3.6.3 Messages

Messages related to the identi�cation process are generated and transmitted in the network

only when a sinkhole is detected. As mentioned before, there are no additional network messages

required for the detection process. The message overhead is dependent upon how far, or the

number of hops h, the detecting node is from the sinkhole. Therefore, mLow refers to the number

of messages required for the assignments of LLow along the path to the sinkhole. Also partially

dependent upon the number of hops to the sinkhole are the number of neighbor list messages

(mnl) which are sent by nodes that have both the assigning node and LLow in common. Whether

the sinkhole participates in the process by assigning a LLow greatly a�ects the number of

messages generated. We therefore apply binomials j and k to re�ect participation where j = 1 for

no participation, and k = 1 if there is participation. The additional messages generated near the

sinkhole when the sinkhole fails to participate is mf , with mp re�ecting the number of messages

generated during the �splash back� beyond the sinkhole due to its participation. Finally, we

include the messages generated by the average number of �voters�, mv . The number of messages

required by the identi�cation method can be approximated by the following equation:

m = mLow +mnl + kmp + jmf +mv. (3.13)

This equation can be simpli�ed by including the parameters for the number of hops and the

average number of neighbors common to Ln−1 and Ln in each hop to:

m = h+ 2h+ 5k + 3j + 3 (3.14)

or

m = 3h+ 8k + 6j. (3.15)

Figure 3.5 provides a graph depicting the actual messages sent by nodes on each ring compared

to the estimated number of messages for the ring. A protocol for sharing the burden of starting

the sinkhole identi�cation process would need to be developed in a real network, and is not in

the scope of this paper. With the proper protocol, only one node would start the identi�cation

process, limiting the number of messages as overhead.
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Figure 3.5 Number of Messages Per Ring

3.7 Conclusion

In this paper we presented a hypothesis that, by adapting a methodology borrowed from

the science of meteorology, we can utilize the data available at both the node and cooperative

network levels to create a synoptic picture of the network health, providing indications of any

intrusions or other network issues. Our major contribution is to provide a revolutionary way

to analyze node and network data for patterns, dependence, and e�ects that indicate network

issues at a distance. This method did not rely upon the conventional methods of stored patterns

for comparison, but only proper analysis of a subset of the real time parameters of the network.

Simulations using the network described in Table 3.1 showed that the original scheme found

false sinkholes in networks with eight or fewer sinkhole nodes. However, the addition of a

second threshold resulted in the elimination of the false positives, with the trade o� of increased

false negatives in networks of six or more sinkholes. This tradeo� is justi�ed because we can

realistically expect a network to have fewer than six (sinkhole) attackers. Therefore, using the

two thresholds provides proper intrusion detection for this type of attack.

Our results showed the number of nodes in a thirty node network that would start the

identi�cation process and identify the sinkhole(s) based upon the threshold criteria. For the

sinkhole identi�cation process to be implemented in a real network, a protocol for sharing the

responsibility of identifying the sinkhole would need to be developed. The objective of the

protocol would be to allow identi�cation of the sinkhole while limiting the number of nodes

starting the identi�cation process, and the number of messages �ooding the network. Possible
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strategies are a round robin system based upon time, or assignment of responsibility to cluster

heads.

The synoptic analysis technique presented in this paper is founded upon comparing the

counts of events in or e�ects on the wireless network. Other attacks that are based upon caus-

ing or a�ecting countable events that trigger changes in network characteristics are candidates

for synoptic analysis. Attacks at the physical, network, and data link layers such as jamming,

HELLO �ood, and wormhole assaults are likely contenders. Challenges to the use of the tech-

nique described include the development of protocols to identify the initiating node(s) and the

development of a proper network reaction. An additional challenge is a method to provide the

network nodes with more distributed network data without increasing the controlling network

tra�c.
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CHAPTER 4. A METHOD FOR SYNOPTIC LEVEL NETWORK

INTRUSION DETECTION IN A WIRELESS AD HOC NETWORK

A paper submitted to Ad Hoc Networks

Deanna T. Hlavacek123 and J. Morris Chang4

4.1 Abstract

Current system administrators are missing intrusion alerts hidden by large numbers of false

positives. Rather than accumulation more data to identify true alerts, we propose an intrusion

detection tool that e�ectively uses select data to provide a picture of �network health�. Our

hypothesis is that by utilizing the data available at both the node and cooperative network levels

we can create a synoptic picture of the network providing indications of many intrusions or other

network issues. Our major contribution is to provide a revolutionary way to analyze node and

network data for patterns, dependence, and e�ects that indicate network issues. We collect

node and network data, combine and manipulate it, and tease out information about the state

of the network. We present a method based on utilizing the number of packets sent, number of

packets received, node reliability, route reliability, and entropy to develop a synoptic picture of

the network health in the presence of a sinkhole and a HELLO Flood attacker. This method

conserves network throughput and node energy by requiring no additional control messages to

be sent between the nodes unless an attacker is suspected. We intend to show that, although the

concept of an intrusion detection system is not revolutionary, the method in which we analyze

the data for clues about network intrusion and performance is highly innovative.

1Graduate Student, Department of Electrical and Computer Engineering, Iowa State University.
2Primary Researcher and Author.
3Author for correspondence.
4Associate Professor Department of Electrical and Computer Engineering, Iowa State University.
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4.2 Introduction

Wireless ad hoc networks are self-organizing and self-con�guring infrastructure-less networks

of nodes which are connected by wireless links. Ad hoc networks are becoming more popular with

802.11/WiFi capable products for communication, entertainment, work, and study. Wireless

sensor networks (WSNs) are being deployed in the home and o�ce for security and energy

conservation. WSNs are also deployed in many places in the environment, acting as watchdogs

in forests to watch for �res, on mountaintops to alert on avalanches, and on bridges to report ice

development. Additionally, the new cognitive radio is being developed with ad hoc capability.

The cognitive radio provides enhanced environmental awareness and cooperative capabilities,

and is capable of identifying and utilizing unused frequencies dynamically. This allows more

concurrent wireless communications in a given spectrum band at one location. The cognitive

radio is expected to be o�ered to the public, but its most anticipated deployments are to

emergency responders and military forces to allow communication in infrastructure-less areas.

With the growth in popularity of these technologies, there is a growing demand for intrusion

detection systems that can operate with network node cooperation. An intrusion detection

system (IDS) is a software application that monitors the network for, and reports on, malicious

activities or policy violations. Current research on intrusion detection systems for wireless ad

hoc systems focuses mainly on anomaly detection. Generally, the anomalies garnering the most

attention are anomalies in routing protocol, tra�c patterns, and packet meta-data. However,

anomaly and large data based intrusion detection systems are susceptible to high false positive

rates. With limited time and resources, many true positives are lost in the overload of the

combined true and false alerts, and other data.

An example of this is the Target point-of-sale breach in 2013. Although an alert was sounded

by the intrusion detection system FireEye, system administrators missed the warning. Over 40

million credit card numbers were sent to Russia before administrators investigated the alarm and

took action to close the breach [107]. Similar breaches occurred at Home Depot and a variety

of restaurants and other retail centers. Since the false positive rate for anomaly detection

tends to be high, research has now moved more towards hybrid solutions, combining anomaly
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detection with misuse detection or speci�cation deviation. All of these methods require some

prior training of the network nodes or pre-positioning of data for comparison.

Perhaps the solution is not more data. Rather, the solution may lie in the ability of a system

to e�ectively use select data. Igor Baikalov, chief scientist at Securonix, was quoted in an article

by the New York Times [107]: �We don't need 'big data'. We need big information.� By carefully

removing the noise created by large amounts of data, we allow our security professionals to focus

on information with value, quickly identify attacks, and make timely decisions.

Our motivation for research related to intrusion detection arises from the current lack of

comprehensive research into methods of analysis of selective information in an e�ort to construct

a big picture of network security and integrity, termed as �network health�. Research into the

parameters of the nodes and networks, the interplay of parameters and their e�ect upon each

other, and how the concurrence of certain parameter levels portend negative or positive network

health can bring valuable insight into the diagnosis of network ills.

Our hypothesis is that, by adapting a methodology borrowed from the science of meteorol-

ogy, we can utilize the data available at both the node and cooperative network levels and create

a synoptic picture of network health, providing indications of any intrusions or other network

issues. Parameters such as packet delivery ratio, packet sequence number, route-add ratio, and

many others have previously been used to alert on and/or identify intruders. However, this data

also provides valuable information about the state of the network as a whole. By analyzing the

packet, route, and node data at a network level we expect to develop a synoptic picture of the

network and identify indicators comprised of di�erent types and levels of data. The visual rep-

resentation of the synoptic network picture is expected to be much like synoptic weather charts

depicting the temperature, pressure, and relative humidity centers that, once properly analyzed,

are indicative of changing weather. And, just as a meteorologist collects, combines, analyzes,

and interprets temperature, pressure, humidity, wind direction, and wind speed to determine

the weather conditions in an area, we can collect, combine, analyze, and interpret the number of

sent packets, received packets, control messages, broken links, re-transmitted packets, and node

energy consumption (for example) to paint a picture of the wireless network and determine the

network health. In this sense, just as thermometers, barometers, and anemometers can monitor
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the environment for approaching storms, we have network tools that monitor parameters that

can be used to identify malfunctioning areas of the wireless network. Since the synoptic analysis

technique presented is founded upon comparing the counts of events in or e�ects on the wireless

network it is anticipated that other attacks that are based upon causing or a�ecting countable

events that trigger changes in network characteristics are candidates for synoptic analysis. Ex-

amples are attacks at the physical, network, and data link layers such as a sinkhole, jamming,

HELLO �ood, and wormhole assaults.

Our major contribution is to provide a revolutionary way to analyze node and network

data for patterns, dependence, and e�ects that indicate network issues. Our �rst contribution

in this vein was presented in [41]. It described a method based on utilizing packet delivery

ratio (PDR), node reliability, route reliability, and entropy to develop a synoptic picture of

the network health in the presence of a sinkhole. Future study will determine if the method,

possibly enhanced, will work in a mobile network. This work revisits sinkhole detection and

identi�cation in a grid network as a demonstration. The work is expanded to include a sinkhole

in a thirty node scrambled network. We also include the detection and identi�cation of a

HELLO Flood attacker using the same methodology. We intend to show that, although the

concept of intrusion detection is not revolutionary, the method in which we analyze the data for

clues about network intrusion and performance is innovative, and can be a valuable addition to

the intrusion detection �toolbox�.

In this paper we will take a look at current research related to intrusion detection systems

designed for wireless ad hoc networks, sinkhole detection, and HELLO Flood attacker detection.

Next we provide a description of our methodology in network analysis for detection and identi�-

cation of a single sinkhole and multiple sinkholes in a grid network, and our results based on the

simulation data as presented in [41]. Additionally we provide analysis of the technique based

on a single sinkhole in a scrambled network and on a HELLO Flood attacker in a scrambled

network. Last we will conclude with a synopsis of the process and the impact of our experimen-

tal results. The sections of the paper are organized as follows: Section 4.3.2 describes current

research into intrusion detection systems, sinkhole detection, and HELLO Flood detection in

wireless ad hoc networks; Section 4.4 presents the methodology of identifying an attacker based
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on the PDR, node reliability, and system entropy; Section 4.5 presents our results with simula-

tion of a sinkhole and HELLO Flood attacker in wireless ad hoc networks, and data analysis;

Section 4.6 provides comparison of the simulation results to other sinkhole and HELLO Flood

attacker identi�cation methods; and Section 4.7 is the conclusion.

4.3 Related Work in Wireless Ad Hoc Networks

Wireless ad hoc networks have no router or access point providing infrastructure to the

network. Each node provides routing services, via routing protocols, by forwarding packets to

their neighbors. All nodes in an ad hoc network have equal status in the network, and can

associate with any network device within range. There are three main routing protocols for ad

hoc networks: Optimized Link State Routing (OLSR), Dynamic Source Routing (DSR), and

Ad Hoc On Demand Routing (AODV). OLSR is a proactive, or table-driven, protocol. DSR

and AODV are both on-demand, reactive protocols in which the nodes maintain routing tables.

AODV's routing tables are refreshed according to a timer. We have chosen to use the AODV

routing scheme for our �rst demonstration.

4.3.1 Intrusion Detection Systems

Conventional intrusion detection systems (IDS) are based on misuse detection, anomaly

detection, or deviation from speci�cations. Misbehavior/misuse detection refers to identifying

an attack by comparing collected information against a prede�ned list of �signatures� of known

attacks. Anomaly detection is a close opposite to misuse detection. With anomaly detection,

rather than storing a list of the signatures of known attacks, the system stores patterns of

�normal� behavior for comparison to the current behavior. The third technique, speci�cation

comparison, also compares the current behavior to a stored behavior pro�le. However, the

comparison is against manually de�ned speci�cations, rather than machine learning and training

techniques.

Recently, most of the intrusion detection system research for wireless ad hoc systems has

focused upon the detection of anomalous behavior patterns. In the paper [110] a new detection

scheme called AODVSTAT is presented. The method is similar to other watchdog schemes
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in that the nodes watch the packet events and the meta-data in the packets for anomalies

in the protocol. Deviations from the protocol are considered state changes, and trigger an

alarming event. In an e�ort to lower false positive rates using packet features as the basis for

anomaly detection, the authors of [58] conduct careful feature selection from the available set

of packet features for their method. Similarly, [53] uses the entropy of packet features to detect

deviations, and provides a ranking of alerts in an attempt to lower the false positive rate. The

authors of [108] base their system solely upon the packet sequence number mismatch with the

expected packet sequence number. A con�dence level for each node is calculated based on the

number of interactions with its neighbors. Rather than packet features, the authors of [135]

base their detection on anomalies in tra�c patterns, comparing the current tra�c pattern to

a learned tra�c pattern. All of these techniques either requires knowledge stored in memory

of the �normal� pattern of behavior, or some type of training before deployment. Attacks that

do not register against the learned normal pro�le can not be detected by these systems. These

methods are also prone to false positives, since hiccups in the network can cause the systems

to react with identi�cation of pattern anomaly.

The authors of the papers [3, 34] both present hybrid detection schemes. The paper [3]

combines anomaly and misuse detection schemes in order to lower the false positive rate gener-

ally seen with anomaly detection, and raise the low detection rate ascribed to misuse detection.

The authors of [34] chose to combine the anomaly and speci�cation based schemes, and uses a

reputation based system in an attempt to lower the false positive rate. However, this method

adds much packet overhead as the nodes in the neighborhoods vote.

In comparison to these methods of intrusion detection, our intrusion detection method is

based not on stored patterns, signatures, or rules, but the e�ect upon the node, route, and

network function. Our system requires no training or pre-placed data concerning the expected

network protocol or tra�c pattern. Therefore, new or craftily tweaked older intrusion methods,

such as a stealthy sinkhole that follows network protocols while selectively dropping packets,

will still be identi�ed, as long as the e�ect of the disruption surpasses the established threshold.

We have no watchdogs observing the network, and so we are not plagued by the high false

positive rates endemic to these methods. Similarly, we are not doing signature comparison, so
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we are not plagued by the inability (and associated low accuracy rate) to recognize new attack

signatures. Our system instead is monitoring the state of the network, and reacts when the

state of the whole, or portions of, the network move out of alignment. As in holistic medicine,

we do not only pay attention to the symptom; we analyze the symptoms to explore the network

function and �nd the root cause of the malfunction.

4.3.2 Sinkhole Detection

We consider sinkholes as Byzantines in the network. Byzantine behavior is displayed by

any action of a member node that negatively a�ects the routing service in the network. Many

such attacks, such as eavesdropping or packet modi�cation, can be prevented by traditional

authentication, integrity, and encryption mechanisms. The malicious actions of a Byzantine

sinkhole may be more complex, such as modifying the hop count, sequence number, or list of

nodes in a path, in order to make itself more attractive as an entry to an ideal route. According

to the paper [6], attacks using these tactics can also be prevented with more sophisticated

authentication and integrity techniques. We therefore consider the stealthy sinkhole that drops

data packets, entirely or selectively, while participating in the routing protocol.

The authors of [6] present a method of identifying a sinkhole with link weights and probes.

However, this method is part of a newly proposed routing protocol that includes double �ooding

during route discovery and the sending of probes to all network nodes for attack discovery. These

steps create additional network overhead. Additionally, in this routing protocol, the sinkhole

will only be discovered if it is acting maliciously during the probing phase. Finally, this work

provides no insight as to how to identify a sinkhole in the accepted ad hoc routing protocols

Ad Hoc On Demand Distance Vector Routing (AODV), Dynamic Source Routing (DSR), or

Optimized Link State Routing (OLSR).

In the paper [57] the authors present a packet drop attack detection method in which the

neighbors adjacent to a communications route monitor the actions of the en route nodes. If a

particular node does not forward a speci�c number of packets in a certain time period, an alert

proclaiming a malicious node is started. The authors make a distinction between greyholes,

which drop only a portion of the packets, and blackholes, which drop all received packets.
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Analysis by the authors indicates that only blackholes, and gray holes in the same vicinity, can

be identi�ed. If no blackhole exists, the greyholes will not be identi�ed. Similar to this method

is the watchdog method presented by the authors of [39]. Again, collaborative nodes observe

the actions of the nodes en route and use a protocol to determine when an alarm should be

sounded. Unfortunately the reliability and e�ectiveness of this method is di�cult to determine

since the authors have not yet determined the false positive/false negative rates for the protocol.

Several papers rely upon the sinkhole bucking the routing protocol by changing the sequence

numbers. The sinkhole identi�cation schemes described in the papers [22, 33, 46] are therefore

not e�ective in identifying a stealthy sinkhole that does not change the packet sequence number.

The authors of [22] additionally use the previous image ratio to identify the sinkhole. In the

previous image ratio method the received routing packets are compared to other stored routing

packet images. However, this method relies upon the sinkhole having forged the route records

in their route request packets. Therefore, if a stealthy sinkhole has not forged the route records,

the sinkhole will not be identi�ed by this method.

A third indicator of a sinkhole identi�ed and used by the authors of [22, 46] is the route add

ratio. The route add ratio is the number of routes that traverse a particular node divided by

the total number of routes added to the node's routing table. Unfortunately, [46] only mentions

the idea of the route add ratio, but does not explain how the ratio is used. In [22] a network

node is speci�ed to keep a counter for each node in the network, and increment the counter

when a route passing through the node is added to the cache. This presents the issue of one

node storing data for all of the nodes, and additional messages created and sent to the assigned

node when any network node adds a route to its cache. The data related to this study did not

provide a method to determine the message overhead related to this technique.

In comparison to these studies, our method does not rely solely upon the sinkhole cheating

on the routing protocol. Therefore, a stealthy node will still be identi�ed by its e�ect on the

network, rather than missed due to it not sending signals through the routing protocol. Also,

even though there are additional messages included with our sinkhole identi�cation scheme, no

additional messages are required before the possibility of a sinkhole is discovered. The overhead

of messages m related to sinkhole identi�cation is related to the number of hops from the
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detecting node to the sinkhole and is very small. We analyze the number of messages required

in Section 4.6.3.

4.3.3 HELLO Flood Attacker Detection

The HELLO �ood attack was �rst described by the authors of [51] as an attack against wire-

less sensor networks. However, due to similarities in the routing protocols of ad hoc networks,

the attack can also be applied to the cognitive radio network [40]. The attack relies upon an

attacking node �ooding the network, or at least a portion of the network, with HELLO packets

broadcast at a higher transmission power. Since the network nodes receiving the HELLO pack-

ets assume that the sender is within normal radio range, they will attempt to use the attacking

node as a route to other nodes. This can result in a network in a state of confusion.

One counter measure against the HELLO �ood attack suggested by the authors of [51] is to

con�rm the bidirectionality of a link using an identi�cation veri�cation protocol. The protocol

employs an encrypted echoback mechanism before using the link. It is acknowledged that this

defense is less e�ective when an attacker has a highly sensitive receiver along with the powerful

transmitter.

The authors of [94] suggest the the network use a received signal strength (RSS) value as a

threshold. Received HELLO packets are compared to the threshold. If the RSS of a packet is

greater than the threshold, the node is determined to be a �stranger�. If a packet is received such

that the RSS meets the threshold, the sending node is determined to be a �friend�. Network

nodes additionally test �friend� nodes by sending a test packet. If the acknowledgment to the

packet is not received from the �friend� in the allotted time, it is determined the �friend� is

actually a �stranger�.

In the paper [13] the authors suggest a solution using a base station. If the station determines

there may be a denial of service (DoS) attack taking place, the station challenges clients with

cryptographic puzzles. The di�culty of the puzzles distributed to a node is based upon a node's

trust value.

A base station is also used as a Trusted Third Party in a countermeasure suggested in [51].

With this method, the base station facilitates the establishment of session keys between parties
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of the network. The keys are then used by the nodes to verify each other's identities. The

number of shared keys must be limited so the attacker cannot establish a connection with every

node.

In comparison to these studies, our method does not rely upon the use of a base station

in the network. Additionally, the method proposed by the authors will not have the overhead

of exchanging or storing cryptographic keys. Our method also will not depend upon the prior

training of the network concerning the received signal strength threshold, nor will there be

additional message overhead due to the sending of test packets. As will be shown, our method

will only incur message overhead during the identi�cation process after the HELLO �ood attack

is detected.

4.4 Methodology

The methodology of the attacker identi�cation scheme consists of two parts. First, the

detection phase, in which one or more nodes are alerted that there is a possible attacker in the

network. Individual nodes calculate their neighbors' reliability values, and are alerted when

a reliability crosses a threshold. The second phase is the attacker identi�cation phase and

involves querying speci�c network nodes for data they have about their neighbors. We make

the assumption that each node is aware of its immediate neighbors. However, the nodes may

not immediately be aware of the position of its neighbors relative to itself or each other.

4.4.1 Detection Process

In the neighbor reliability method of determining the health of the network, each node

counts the number of packets sent and received along each route. The nodes calculate the

packet delivery ratio for the stored routes by relating the number of packets received along the

route to the number of packets sent along the route. This PDR is also referred to as the �route

reliability�, and represents the cumulative reliability for each node along a route. From this data,

the nodes each determine their �neighbor reliability� by calculating the entropy for all known

routes through the neighbor node. Neighbor reliability refers to a single node's perception of

the probability of a packet following any route through a single neighbor to successfully reach
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Algorithm 3 Calculations of Neighbor Reliability

//Done for each neighbor node (Y) around the starting node A

//routeRel: route reliability

//neighRel: neighbor reliability
1 : for each neighNode(Y)
//Calculate route reliability for routes X through neighNode Y
2 : for each route(X) (Z nodes along route)
3 : for each node(Z) on route X
4 : routeRel(X) = routeRel(X) * pdr(Z);
5 : saveRouteRel(XZ) = routeRel(X);
6 : get next node pdr(Z) on route(X);
7 : get next route(X);
//Calculate neighbor reliability using all routeRel(X)
8 : for each routeRel(X)
9 : neighRel(Y) = neighRel(Y) +

(routeRel(X) * [log2(1/routeRel(X))]);
10: saveNeighRel(X) = neighRel(Y);
11: get next routeRel(X);
12: get next neighNode(Y);

the intended destination. The Shannon entropy equation, used to estimate the diversity of the

system, is applied. The formula follows, where p(x) is the route reliability:

H(x) = −
∑

p(x)log2p(x) =
∑

p(x)log2(1/p(x)) (4.1)

Algorithm 3 describes the process to obtain the neighbor reliability values. Note that in

simulation we use the probability that a packet will reach its destination when routed through

an individual node for the PDR of node Z. This was substituted for the true PDR of a route

that would be known in a live network.

Using this method, assuming a stationary MANET grid of nodes with one node per grid

space, each node in the grid will have up to eight di�erent neighbor reliability values, each value

from the perspective of one of its (up to eight) neighbors. Additionally, each node will have

up to eight neighbors for which it has determined neighbor reliability values, comprising the

neighbor reliability set. Using its neighbor reliability set, each node calculates the standard

deviation of the set. A lower boundary is calculated by subtracting the standard deviation from

the mean of the set; the boundary acts as a threshold. The use of the standard deviation was

determined experimentally; one standard deviation provided a proper boundary to determine if

the neighbor reliability was low enough to indicate the possibility of a sinkhole when compared

to the neighbor set. The lower boundary in a live network will need to be determined based
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upon the particular network. This process provides the node the ability to observe the current

state of the network surrounding it, and helps identify anomalies based on the current network

state. If the neighbor reliability of any neighbor crosses the threshold, the node is alerted

that there may be an attacker in the network. Note that until this point, all calculations and

decisions are made upon data collected by the node without additional messages or queries to

the network or neighbors. Therefore, unless an alert is signaled, there is no impact upon the

network throughput for this method.

The example in Figure 4.1 shows several nodes with reliability values applied to each node

by its neighbors. The values in the �gure are charted according to compass coordinates from

the perspective of an individual node. For example, Node W applies the values of 5.443 to node

AA, 5.324 to node BB, 5.436 to node CC, 5.276 to node X, 5.443 to node V, 5.393 to node R,

5.441 to node Q, and 5.329 to node S. These values comprise node W's neighbor reliability set.

Conversely, node W is applied the values of 0.1322 as perceived by node AA, 0.1315 by node

BB, 0.1331 by node C, 0.1333 by node X, et cetera.

Figure 4.1 Neighbor Reliability Plot (values * 10e-6)

4.4.2 A Proof

We consider a simple grid network of nodes with a sinkhole placed in the center of the network

(Figure 4.2). The sinkhole drops a large number of all received packets; let the percentage of

successful packet delivery for the sinkhole be b. The network uses AODV routing, utilizing the
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shortest route. We make the following assumptions:

1. Each node is aware of all of its eight neighbors.

2. No route will pass through more than one of the source node's neighbors, and no more

than two neighbors of any node along the route.

3. All routes are of three hops.

4. All nodes except the sinkhole drop a very small number of packets. Let the percentage of

successful packet delivery for these nodes be a.

5. Percentage a >�> b.

A source node (src1) located next to the sinkhole will have seven neighbors with routes that

do not traverse the sinkhole, and therefore experience a packet delivery percentage of a. The

last neighbor will have all packets routed through the sinkhole, experiencing a packet delivery

percentage of b. The average percentage of packets experienced by this node will therefore be:

PDRsrc1 = (7a+ b)/8. (4.2)

A source node (src2) two hops from the sinkhole will have more routing choices that do not

include the sinkhole. In the described network, �ve of the neighbors will have no routes through

the sinkhole. Of the three neighbors left, two will each have four of their nineteen routes

traversing the sinkhole (see Figure 4.2). Let this be represented by PDR31/33.One neighbor

will have three of its thirteen routes passing through the sinkhole (Figure 4.3). Let this be

represented by PDR32. The PDR experienced by src2 is therefore represented by the following:

PDRsrc2 = 5a+ PDR31/33 + PDR32 (4.3)

where

PDR31/33 = [2(15/19)a+ 2(4/19)b]/8 (4.4)

and

PDR32 = [(10/13)a+ (3/13)b]/8 (4.5)
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or

PDRsrc2 = [7.53a+ .65b]/8. (4.6)

Likewise, a source node (src3) three hops from the sinkhole will have more routing choices

that do not include the sinkhole. In this scenario seven of the neighbors do not have any routes

through the sinkhole. One neighbor has three of its thirteen routes traversing the sinkhole. We

get the following equation:

PDRsrc3 = [7a+ (10/13)a+ (3/13)b]/8 (4.7)

or

PDRsrc3 = [7.77a+ .23b]/8. (4.8)

Since a >�> b, we remove the terms with b from the equations. We can also remove the

denominator of �8� since it is the same for all equations. By the relationship below, we prove

that PDRsrc1< PDRsrc2 < PDRsrc3.

7a < 7.35a < 7.77a (4.9)

Figure 4.2 Route Example from SRC2 (Node 33)
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Figure 4.3 Route Example from SRC2 (Node 32)

4.4.3 Identi�cation Process

The identi�cation process works similar to water in a reservoir. When the water reaches a

higher point in the reservoir, it stops moving forward and splashes back. In our identi�cation

process, the query messages will move towards the lowest reliability point and stop at the higher

value nodes on the other side of the lowest point. Once the higher nodes are reached, the �splash�

will be a broadcast message �ooded through the network reporting the identity of the attacker.

We use a sinkhole as the attacker for the following identi�cation step description.

In the identi�cation process, we assume that each node is aware of its immediate neighbors,

although not necessarily their relative positions. We call this set of neighbors �ring one� as

related to the alerted node. When a node determines that a threshold has been crossed, it

broadcasts a query to its immediate neighbors (ring one) for their neighbor lists. The query in-

cludes the alerted node's assignment of L1, which is the node with the lowest neighbor reliability

from the perspective of the alerted node. Only the neighbors with neighbor lists that include

L1 broadcast a reply to the query. Node L1 was able to receive the information sent by its own

immediate neighbors in response to the query made by the alerted node. Node L1 assigns L2

to its neighbor with the lowest reliability value (L2 will most likely, but not necessarily, be in

ring two), and sends this assignment along with a broadcast query for neighbor lists. Only the

neighbors with L2 in their neighbor lists that have not already broadcast their neighbor lists

during this identi�cation process round reply to the query. (Algorithm 4)
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Algorithm 4 Identi�cation of Sinkhole

1 : initialize row, col, x to 0; AlertedNode is L0 at [0,0]
3 : Lx identi�es Lx+1 as neighbor with the lowest neighbor value
4 : Lx broadcasts query for neighbor lists along with Lx+1 identi�cation
5 : x=x+1

// if Lx participates in the discovery process it will automatically query neighbors
6 : while attacker not found
7 : Lx identi�es Lx+1 as neighbor with the lowest neighbor value
8 : if Lx+1 == Lx-1 OR Lx+1 == Lx-2 AND if other shared neighbors that have not yet been polled
exist
9 : immediate neighbors (not Lx-2, Lx+1, or Lx-1) vote to determine which of the compared nodes
has the lowest value
10: node that is not determined lowest value alerts network of identity of attacker
11: else if y > 2 AND Lx+1 == Lx-y
12: Lx-1 removes Lx neighbor value from neighbor list
13: x = x-1 //this is a loop with no positive attacker determination
14: else if Lx queries neighbors for THEIR neighbor list
15: Lx+1 receives neighbor lists from immediate neighbors and determines relative placement of
immediate neighbors
16: else if Lx-1 does not hear Lx query neighbors in time T
17: Lx-1 queries immediate neighbors shared with Lx (Lshared_1 and Lshared_2) for their neighbor
lists and neighbor values
18: Lx-1 determines relative locations of neighbors shared between Lshared_1 and Lshared_2
19: if neighbors shared include only Lx and Lx-1
20: Lshared_1 and Lshared_2 send queries for neighbor lists and reliabilities
21: neighbors with lists that include Lx respond to query
22: Lshared_1 and Lshared_2 provide query information to Lx-1
23: Lx-1 uses neighbor locations and neighbor values to determine if Lx has lowest local neighbor
value
24: if Lx has lowest neighbor value as reported by surrounding immediate neighbors
25: Lx-1 alerts network Lx is a attacker
26: else

27: Lx-1 removes Lx neighbor value from neighbor list
28: x = x-1
29: x=x+1

30: end while

This process continues until we have reached the area around the sinkhole, ring n. The

nodes queried in ring n will include the sinkhole and some of its immediate neighbors. At

this point the sinkhole may or may not participate in the process. If it does participate, the

sinkhole will continue the process by identifying Ln-1. Ln-1 will then identify the sinkhole as

its neighbor with the lowest reliability value. The sinkhole may not acknowledge, nor realize,

it is the sinkhole. Therefore, the sinkhole (call the sinkhole S ) assigns LLOW (call this node

X ) to one of its neighbors. Node X compares its neighbor reliability values and re-identi�es

the sinkhole (S) as its neighbor with the lowest neighbor reliability. To attain con�rmation, X

broadcasts a query to its neighbors for a �vote� as to which of the two nodes they identify as the
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node with the lowest value. Only nodes with both nodes S and X as neighbors reply. The node

requesting the vote will �ood the network with the identi�cation message naming the sinkhole.

If the sinkhole does not participate, the node (Ln-1) that sent the message to the sinkhole and

its neighbors will note that there have been no messages from Ln in time T. At this point, Ln-1

will resend a message to the sinkhole and neighbors common to the requesting node and the

non-responding (possible) sinkhole, requesting the reliability values for all of their neighbors. If

the neighbor lists received do not include at least three neighbors in common, additional queries

will be sent by the neighbors of Ln to their neighbors. The additional information received will

be provided to Ln-1. Analyzed together, this information will con�rm that the node with the

lowest reliability in ring n is indeed the sinkhole, and Ln-1 will broadcast the message identifying

the sinkhole to the network.

The action taken by the network upon identi�cation of the attacking node is dependent upon

the system protocol, and is beyond the scope of this paper. However, there are basically two

types of actions: isolation of the node, or incentivation for proper network behavior. Isolation

means the suspect node may be ignored by the network when it advertises access to routes to

any destination, and so ostracized from the network. Incentivation means allowing the suspect

node to send its own data only at the rate that it is providing to the network, and this allowed

rate increases as the misbehaving node decreases the number of dropped packets and increases

its packet delivery ratio. It must be recalled that although we have referred to the suspect node

with low reliability an attacker, it may be a sel�sh node, or just a malfunctioning node. This

method of identifying the unreliable node does not determine intent.

4.5 Simulation

We simulate the detection and identi�cation in several networks. We start with a grid

of thirty nodes with one sinkhole. We then simulate and provide analysis for up to eighteen

sinkholes in the grid network. We also analyze a network of thirty nodes in a scrambled network

with one sinkhole. Finally, we simulate a HELLO Flood attack in a scrambled network of twenty

nodes. It is shown that the methodology described works for several attackers in one network,

for scrambled and grid networks, and for both sinkhole and HELLO �ood attackers.
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Table 4.1 Network Parameters

Node Parameters Value

Number of Nodes 30

Node Placement 6 by 5 grid

Simulation Duration 1500 seconds

Routing Protocol AODV

Type of Stations MANET

Node Speed 0 kts

Transmit Power .0001 w

Packet Reception Power Threshold -95 dBm

Bu�er Size (Member Nodes) 256000

Bu�er Size (sinkhole) 415

Route Length 5 nodes, 4 hops

4.5.1 Sinkhole Attack

To obtain simulated network data we chose OPNET Modeler 17.5, a commercially available

tool set used by the communications industry for modeling, simulation, and analysis of commu-

nications networks and applications. The initial network topology is a six by �ve grid mobile

ad-hoc network (MANET). The size of our network was chosen based on a study of the e�ects

of insider attacks by the authors of [28]. According to the study, thirty nodes is the ideal size

of network for a sinkhole to operate e�ectively.

For the initial study the nodes are all stationary and the parameters for the member nodes

are uniform. Tra�c supplied by the OPNET MANET model is used. Each node is a tra�c

generator. No specialized tra�c is added, and no additional noise is added to the network.

Ad hoc on demand (AODV) routing is chosen as the routing protocol. Route length for the

identi�cation method is limited to �ve nodes, with four hops. This limitation was imposed to

provide a simple initial standard for comparing route reliability results. The routes used for the

calculations are not all inclusive. Therefore, not all neighbors may play a part in determining

the calculated neighbor reliability value. Parameters for the member nodes are shown in Table

4.12.

The bu�er size for the member nodes was left at the OPNET MANET default of 256000

packets. The bu�er size for the attacker was lowered to 415 packets to simulate a sinkhole.
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This bu�er size was chosen because it allowed packets to be dropped without stopping all

tra�c routing through the attacking node. The number of dropped packets at this setting

impacted signi�cantly the amount of data tra�c sent by the attacking node. Normal nodes

sent an average of 903.5 packets over the 1500 second simulation period, as opposed to the 17.3

packets sent by the sinkhole. Note that the 1500 second simulation period and the 15 second

intervals were arbitrary. Since the sinkhole e�ect is recorded almost immediately and the e�ect

is nearly constant over the entire period using the simulation parameters described, the interval

parameters for recording the data can be optimized. Subsequent tests showed that the sinkhole

could be detected in the �rst �fteen seconds of the commencement of network tra�c. Data

collected per node included:

1. At each node, the number of packets received per second in �fteen second intervals.

2. At each node, the number of packets sent per second in �fteen second intervals.

Table 4.2 Node G's Neighbor Reliability

Start

Node

G

Reliability

Neighbor

List

GA GB GC GH GL GM

Reliability

Value List

3.0541E-06 2.9556E-06 3.0578E-06 2.2118E-06 2.6235e-06 2.2152E-06

Reliability

Cumula-

tive (all

nodes)

0.00025877

Reliability

Average

(all

nodes)

4.3128E-05

Entropy

Per

Neighbor

List

5.5955E-05 5.4287E-05 5.6014E-05 4.0733E-05 4.8238e-05 4.0790E-05
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4.5.1.1 Discovery and Identi�cation Processes Using Simulation Results

In this context, the packet sent ratio (PSR) is the ratio of the number of data packets sent

to the number of data packets received at a particular node. To �nd the neighbor reliability in

our simulation, we �rst calculate the route reliability by multiplying the PSRs for each node

along a route, starting at the �rst hop (as opposed to the sending node). Next we calculate the

entropy of all known routes through the neighbor node. Plotting the neighbor reliability values

on a plot of the network shows that the lower values tend to be centered around the sinkhole.

For an example, we assume node G is the �rst node to identify a possible attacker. From

the reliability calculations (Table 4.2), node G identi�es neighbors H and M as having entropy

values below the threshold value for node G. Node G currently has a view of the network that

includes its immediate neighbors, although node G may not know the relative locations of the

neighbor nodes at this time. Node G identi�es node H as the neighbor with the lowest reliability

value. Node G broadcasts this assignment and queries its neighbors for their neighbor lists.

Only G's neighbors that share H as a neighbor broadcast their neighbor list; therefore, nodes

L, M, C, and B broadcast their lists. Upon receipt of the data, node H places the nodes on the

grid relative to itself (4.4). Node H reports it's neighbor with the lowest neighbor reliability

value to node M, and queries its own neighbors for their neighbor lists. Again, only the neighbors

that share node M as a neighbor broadcast their neighbor lists. From this information, node M

is able to place itself and its immediate neighbors on the grid. Node R is assigned as having the

lowest neighbor reliability value by node M. Neighbors that share node R as a neighbor make

their neighbor list reports. Node R identi�es node W as the neighbor with the lowest reliability

value, continues the process, and node W identi�es node X. Node X then identi�es node W

as the neighbor with the lowest reliability. Since nodes W and X identi�ed each other, shared

neighbor nodes �vote� for the neighbor with the lowest value. Since W has participated in the

process, and it has been identi�ed as the neighbor with the lowest reliability in the local area,

node W (or, if needed, node X) announces to the network W is the sinkhole.

We borrow a technique from weather forecasting to analyze the plot by drawing isopleths

for the reader to indicate the levels of entropy in the network. This provides a human-readable
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Table 4.3 Partial Table of Neighbor Reliability Values

Node H Neighbors L N M

Reliability Values 4.73898E-05 5.32743E-05 3.51034E-05

Node M Neighbors Q R S

Reliability Values 5.56492E-05 1.90244E-05 5.39725E-05

Node R Neighbors V W X

Reliability Values 5.29084E-05 .130932E-05 5.31013E-05

Node W Neighbors X BB CC

Reliability Values 5.27565E-05 5.32431E-05 5.43592E-05

Node X Neighbors W BB DD

Reliability Values .133259E-05 5.23300E-05 5.29058E-05

synoptic view of the network at the current time. As can be noted in Figure 4.4, the sinkhole

has been identi�ed as the lowest area of reliability in the network. Even though the immedi-

ate neighbors to the sinkhole node are not dropping packets, their proximity to the sinkhole

a�ects their reliability value because of the number of routes they have stored for use in their

routing table that traverse the sinkhole. Nodes farther away from the sinkhole have their relia-

bility values less a�ected by the attacker because they tend to have fewer routes traversing the

sinkhole.

Figure 4.4 Synoptic analysis of neighbor reliability
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4.5.1.2 Data Analysis - One Sinkhole

Analysis of the data set and the data related to each node shows that every node except

node E resulted in an alert due to at least one of the neighbor nodes having entropy less than

the one sigma lower boundary threshold. It must be noted that node E did not have any routes

traversing node W (the sinkhole) in its routing table. Every other node had at least one route

traversing node W. Also, starting the identi�cation process from every node (except E) found

W to be the attacker (or malfunctioning node).

There are cases in which the identi�cation process may not be initiated and the sinkhole not

found. However, as the network matures and nodes store routes with the sinkhole traversed,

the identi�cation process will be initiated. The special cases are listed below:

1. If a node exists with no routes stored that traverse the sinkhole, the sinkhole will not be

detected by this particular node.

2. If a node exists with all routes traversing only one neighbor there will be no detection

alert by this node. This is due to the method of calculating the threshold.

3. If a node exists with with all routes traversing only two neighbors the detection process

will not be started. This is due to the method of calculating the threshold.

4.5.1.3 Additional Cases Investigated

In the case analyzed above we showed that one attacker acting as a sinkhole can be identi�ed

in the stationary grid network of thirty nodes. Since the sinkhole was alerted upon by all but

the sinkhole itself and one additional node, the chance of sinkhole discovery was 93% (based

on the number of nodes that are alerted to a sinkhole in the network by the detection process

divided by the number of nodes in the network - in this case, 28/30 = 93%). This is because

the e�ect of the sinkhole extends through the network for routes at least �ve nodes long. The

following cases investigate whether more than one sinkhole can be identi�ed in the network of

thirty nodes.
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No Sinkholes in the Network In the case of no sinkholes in the network, we would like

to have no alerts, and to �nd no suspects. However, since no network is homogenous (including

the OPNETMANET network set up as described), it is likely that there will be at least one node

in a neighborhood of nearly homogenous transmitting neighbors that will be falsely identi�ed

as a sinkhole. Using the algorithm described based solely on one standard deviation as the

threshold, in a network with no intentional sinkholes placed, there were twenty-six nodes that

were alerted to the possibility of a sinkhole. Four false positives were identi�ed. This result

portends the possible result that after identi�ed true positives (sinkholes) in a network, the

process may then �nd one or more false positives.

Two Adjacent Sinkholes in the Network In this case, we have included two adjacent

sinkholes operating in the same area of the network (V, W). Experimental results show that

all but one node was alerted to the possibility of a sinkhole in the network, and nine nodes

have two neighbor reliability values that indicate the presence of one or more sinkholes. Since

the sinkholes are adjacent, the identi�cation process �rst �nds the sinkhole with the lowest

value. After the identi�ed sinkhole is removed from the network, as well as all routes in route

lists incorporating the sinkhole, the remaining nodes automatically re-calculate the neighbor

reliability values. The second sinkhole is identi�ed by the identi�cation process since it now has

the lowest neighbor reliability value in the network.

In this instance, node DD again was not alerted to the possibility of a sinkhole. This time

node DD had one neighbor reliability value that was high because it had no routes with sinkholes

included. The other two neighbor reliability values were nearly equal, lower, but fairly close to

the higher value. Therefore, the method of identi�cation and alerting based on incorporating

the standard deviation did not indicate an outlier based on our thresholding scheme.

Table 4.4 Node L's Neighbors Below 1 Sigma Threshold

Results Neighbor Neighbor

Entropy Outlier Name LH LK

Entropy Outlier Value 1.592E-05 2.258E-05
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Table 4.5 Neighbor Lists for Nodes K and L

Node K

Neighbors

Number

Routes

with

Sinkholes

vs. Number

Routes

Neighbor

Reliability

Value

Node L

Neighbors

Number

Routes

with

Sinkholes

vs. Number

Routes

Neighbor

Reliability

Value

KF 1/3 3.999E-05 LF 0/2 5.924E-05

KG 2/6 3.882E-05 LG 2/4 2.961E-05

KL 3/9 3.958E-05 LH 3/4 1.592E-05

KP 3/8 3.885E-05 LK 2/3 2.258E-05

KQ 3/9 4.073E-05 LM 1/11 5.435E-05

LP 0/1 5.886E-05

LQ 3/8 3.888E-05

LR 1/8 5.245E-05

Two Randomly Distributed Sinkholes in the Network There are two sinkholes in

the network located near opposite corners of the grid (I, V). Experimental results show that

all but two of the other grid nodes were alerted to the presence of at least one sinkhole in the

network by their neighbor reliability values. After applying the sinkhole identi�cation process

as described in this paper, each sinkhole was correctly identi�ed by the alerted nodes.

Two of the nodes each have two neighbor reliability values that indicate the existence of

one or more sinkholes. The �rst node, S, has two neighbors whose reliability values cross the

threshold; both of the neighbors' reliability scores are a�ected by their routes through the same

sinkhole. The single sinkhole was correctly identi�ed.

The second node (L) also has two neighbors with reliability values that indicate the presence

of a sinkhole (Table 4.4). However, each neighbor's values are a�ected by routes through a

di�erent sinkhole. Therefore, if we follow the identi�cation process in which we �rst place and

query the neighbor with the lowest reliability value, one sinkhole is identi�ed by node L. After

the �rst identi�ed sinkhole and all associated routes are removed from the network route lists,

and the neighbor reliability values are re-calculated, the second sinkhole is identi�ed by node

L. However, after the associated routes are removed and the process followed a third time there

were two false positives identi�ed in the network.
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The two nodes that gave null results (did not indicate the presence of a sinkhole) were K

and DD. We would expect nodes that have no routes through the sinkholes to be unable to

alert upon the possibility of a sinkhole. However, both of these nodes have routes traversing

each sinkhole. The neighbor reliability values did not alert these nodes because none of the

values crossed the calculated threshold for the node. Investigation shows that in both cases, the

lists of routes through every immediate neighbor included nearly half of the routes traversing

a sinkhole, and the other half of the routes not traversing a sinkhole. Therefore, the mean of

the route set for each neighbor of a node falls between the values reported for routes with no

sinkhole, and the values for routes with a sinkhole (Section 5.2.1 number 4). (It should also be

noted that node K is at the edge of the network, and node DD is in a corner of the network.

Although this placement does not guarantee failure in identifying a sinkhole, it does lower the

possibility due to the smaller number of neighbor nodes for comparison. However, the success

or failure also depends upon the routes contained in the routing table of the node.)

The result is no values fall outside of the threshold, and the node does not receive an alert.

In essence, by the perspective of these two nodes, routes including sinkholes are as common in

the network as routes with no sinkholes, and therefore will not be identi�ed as outliers. This

argument foretells the results we will see in future cases with increased numbers of sinkholes.

The Table 4.5 shows the neighbors of nodes K and L with their neighbor reliability values

and the ratio of the number of routes that traverse the neighbor and a sinkhole to the routes

that do not go through a sinkhole. In this case, node K has no neighbors for which the number

of routes through a sinkhole is greater than the number of routes with no sinkhole nodes. L has

two such neighbors - H and K (note that here we are not looking at node K, but as node K as

a neighbor of node L). Nodes H and K both met the conditions we set for alerting node L of a

possible sinkhole in the network. Node K did not receive any such alert.

Multiple Randomly Placed Sinkholes in the Network Multiple randomly placed

sinkhole nodes were placed in the network. Table 4.6 shows the number of sinkholes, alerts,

sinkholes identi�ed, sinkholes missed, and false sinkholes identi�ed in the thirty node network.

It is important to note that this table represents the number of node members that would alert



www.manaraa.com

107

upon a sinkhole and start the discovery process. However, with a protocol in place to determine

which alerted node would take action, the other nodes would not initiate the identi�cation

process. As a consequence, the number of falsely identi�ed sinkholes appears quite high. This

is because several nodes would alert upon the same false node.

Table 4.6 shows that as the number of sinkholes increased, the number of nodes receiving

alerts decreased. This was expected, because as sinkholes become more numerous, using the

algorithm based on the standard deviation, localized neighborhoods of the network will see the

results of the sinkholes as a norm, rather than an anomaly.

In this network we were able to identify all of the sinkholes in networks with six or less sink-

holes. In the cases of more than six sinkholes, at least one sinkhole was left unidenti�ed. After

the sinkholes were identi�ed, the sinkholes and associated routes were removed from the routing

tables and the neighbor reliabilities re-calculated. The identi�cation process was repeated until

there were no alerts in the network, or until any alerts were deemed non-productive because of

loops in the process (i.e. node A points to node B as the neighbor with the lowest neighbor

reliability value, who points to node C, to node D, to node E, to node A). In all of the networks

with 8 or fewer actual sinkholes randomly placed in the network at least one false positive was

identi�ed.

Half the Network Consists of Randomly Placed Sinkholes This case is constructed

to determine if sinkholes can still be identi�ed when half of the network nodes are acting as

sinkholes. The sinkholes were randomly placed in the network. Because half of the nodes are

sinkholes, and half are not, the network as a whole can be considered homogenous. Therefore,

we expect the di�culty on identifying a single sinkhole to be high.

Results of the experiment show that two nodes were alerted to the possibility of a sinkhole.

One of node K's neighbors had all routes traversing at least 2 or more sinkholes. This resulted

in a very low neighbor reliability value, and so node K received an alert. After several iterations

in which a sinkhole was identi�ed, the sinkhole and its associated routes were removed from

the network and route lists, the neighbor calculations were recalculated, and another node was

alerted, six out of the �fteen sinkholes were identi�ed.
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In the case of the second node that received an alert, node Z, all of the neighbor reliabilities

were a�ected by routes through one or more sinkholes. However, two of node Z's immediate

neighbors were sinkholes. The routes of one of these neighbors traversed enough other sinkholes

to result in a neighbor reliability value that crossed the established threshold calculated by the

standard deviation process. After following the process described in 4, node Z was identi�ed as

a sinkhole. After removing node Z and all routes from the tables traversing node Z, no nodes

received alerts indicating the possibility of a sinkhole in the network.

It must be noted that the analysis has been conducted in a static network; i.e. no additional

routes are being added to the route lists as the sinkholes and their associated routes are removed

from the network. In an active network, nodes attempting to communicate would be replacing

removed routes with new routes not including a sinkhole, thereby rebuilding their route lists.

These results show that the method described in this paper is heavily route and route list

dependent, and performs best in a mature network.

Table 4.6 Experimental Results - One Standard Deviation as Threshold

Sinkholes

In Network

Alerts Sinkholes

Identi�ed

Sinkholes

Missed

False

Sinkholes

0 26 0 0 4

2 28 2 0 2

4 25 4 0 >1

6 20 6 0 >1

8 10 7 1 >1

10 6 6 4 0

15 2 6 9 0

18 0 0 18 0

4.5.1.4 New Criteria for Threshold

The original threshold criteria allowed too many false sinkholes to be identi�ed. Such

identi�cation could result in friendly nodes being excluded from the network. After reviewing

the data for every case, an additional threshold was added to the algorithm. This threshold

excluded nodes with neighbor reliabilities that were not at least one order of magnitude less

than the average of the local neighbor reliabilities from causing alerts. The results seen in Table
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4.7 show that there were no false positives reported when using the new threshold. For the

networks with four sinkholes or less, all of the sinkholes were properly identi�ed. For networks

with six, eight, or ten sinkholes, up to two additional sinkholes were unidenti�ed when compared

to the results in the Table 4.6. Since it is expected that it is highly unlikely there will be more

than one or two misbehaving nodes in a network of thirty nodes, the tradeo� when using the

enhanced threshold criteria is for less disruption in the network due to the removal of innocent

nodes.

4.5.1.5 Generalized results for grid networks with more than one sinkhole

Analysis of the data from the simulation has shown that under other than the special

conditions listed above, the sinkhole will eventually be discovered. The intent of the sinkhole is

not determined; the misbehaving node may be an attacker, a malfunctioning node, or a sel�sh

node. Only the actions of the node in relation to the network identi�es the node as a sinkhole.

It should also be noted that the AODV periodically calls for the clearing of the routing tables.

This provides a sel�sh or malfunctioning node the opportunity to re-enter the network.

Experiments with two, three, four, �ve, and six sinkholes present indicate that using the

same method as described, each of the sinkholes can be individually discovered. However,

several �ndings must be noted:

1. The identi�cation process will only identify one sinkhole per originating node with process

completion.

2. After removal of all routes traversing an identi�ed sinkhole from the routing tables, if

the discovery process warrants the commencement of the identi�cation process, an additional

sinkhole will likely be discovered. This will continue until no new alerts are received.

3. If two sinkholes are adjacent, the sinkhole with the lowest value will initially be discovered.

Once the network has identi�ed the sinkhole and all nodes have removed all routes from their

tables that traverse the sinkhole, the discovery and identi�cation phases can begin again. At

this time the adjacent sinkhole will be discovered.

4. Nodes in di�erent areas of the network alerted to a suspect sinkhole will identify (gen-

erally) the sinkhole that is closest to them. As mentioned in 2, with the removal of the routes
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traversing the identi�ed sinkhole, additional sinkholes will likely be found if the discovery pro-

cess warrants the commencement of the identi�cation process.

Table 4.7 Experimental Results - Additional Threshold Criteria

Sinkholes

In Network

Alerts Sinkholes

Identi�ed

Sinkholes

Missed

False

Sinkholes

0 0 0 0 0

2 13 2 0 0

4 14 4 0 0

6 12 5 1 0

8 8 5 3 0

10 3 4 6 0

15 1 0 15 0

18 0 0 18 0

4.5.1.6 Scrambled Network

A scrambled (Figure 4.5) network of thirty nodes with one sinkhole was simulated. Node

S was assigned as the sinkhole. Besides the node placement, the network parameters are as

provided by Table 4.12.

Results of the simulation show that twenty-�ve of the nodes were alerted to the sinkhole

using the additional threshold criteria described in Section 4.5.1.4. Four nodes other than the

sinkhole did not alert to the sinkhole. The nodes not receiving alerts were C, I, N, and L.

Nodes I, N, and L each have only two neighbors; therefore, special case three as described in

Section 4.5.1.2 applies. Node C has has three neighbors. However, two of its neighbors have

a similar number of routes through the sinkhole, and the third neighbor does not have any

traversing routes that cross the sinkhole. Consequently, an outlier is not observed and node C

is not alerted to the presence of the sinkhole.

4.5.1.7 E�ects of Network Size on Sinkhole Detection

The network size of thirty nodes was initially chosen based upon the study presented in [28].

Subsequent tests using the sinkhole detection process described show that in networks smaller

than 30 nodes the sinkhole can be detected using the initial threshold of one standard deviation
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Figure 4.5 Scrambled Network

below the local neighbor reliability average. However, in the smaller networks the sinkhole is

not detected with the additional requirement of a neighbor reliability value at least one order

of magnitude smaller than its local neighbor's average reliability value.

Tests were conducted on a larger network with varying numbers of hops in the routes. A

one-hundred node (ten by ten) grid network was created with the parameters displayed in Table

4.8. The sinkhole was placed in the top left corner of the large network, one node from the left

edge and one node from the top edge of the network (a similar potion as node V in 4.4). Routes

of four hops (�ve nodes), �ve hops (six nodes), and six hops (seven nodes) were simulated and

the data analyzed for detection and identi�cation of the sinkhole. �Percent accurately alerted�

is the percentage of nodes that are within �ve hops of the sinkhole in the respective networks

that actually detect the sinkhole. As expected, the total number of nodes that are within the

route length limit of the sinkhole and can therefore detect the sinkhole does not include the

sinkhole.

Comparison of results for routes of four hops, �ve nodes in the original thirty node network

to results observed in the larger network are displayed in Table 4.9. In both networks all of



www.manaraa.com

112

Table 4.8 Network Parameters

Node Parameters Value

Number of Nodes 100

Node Placement 10 by 10 grid

Simulation Duration 200 seconds

Routing Protocol AODV

Type of Stations MANET

Node Speed 0 kts

Transmit Power .0001 w

Packet Reception Power Threshold -95 dBm

Bu�er Size (Member Nodes) 256000

Bu�er Size (sinkhole) 415

the nodes within four hops of the sinkhole were alerted to its presence. However, in the larger

network there were a high number of false alerts. In order to reduce this number we added an

additional criteria during analysis of the large network. The original additional criteria of one

magnitude smaller (as described in 4.5.1.4) eliminated all of the true and false alerts in the large

network. Instead we applied a new additional criteria. The new threshold is equivalent to one-

half of one order of magnitude of the neighbor reliability subtracted from the whole neighbor

reliability. Nodes not meeting this criteria are excluded from causing alerts. A comparison of

the results of the large network analysis with and without the additional criteria is in Table

4.10.

As can be seen in Table 4.10, addition of the new criteria drops the number of false positives

(incorrectly alerted nodes) from �fty-eight to one node. The trade-o� is that the number

of correctly alerted nodes drops from thirty-�ve to twenty-eight nodes. This means that the

network would still be alerted to the presence of the sinkhole and the identi�cation process

would be started.

Table 4.11 presents the results of the �ve, six, and seven node length routes in the larger,

one-hundred node network. Both the original results and the results when incorporating the

new criteria are displayed. The results from the large network indicate that the original method

presented for identifying one or more sinkholes in a thirty node network needs tweaking for

di�erently sized networks. The new criteria we added to eliminate a number of the false positives
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Table 4.9 Comparison of Sinkhole Discovery in Small and Large Networks (Four Hop Routes)

Small Network Large Network

Correctly

Alerted

(True

Positive)

28 nodes 35 nodes

Correctly

Did Not

Alert (True

Negative)

2 nodes 7 nodes

Incorrectly

Alerted

(False

Positive)

0 nodes 58 nodes

Incorrectly

Did Not

Alert (False

Negative)

0 nodes 0 nodes

Percent

Correctly

Alerted

100% 100%

without eliminating the true positives was dependent upon the size of the network. It is expected

the requirement for criteria tweaking is due to the �delity of the network data; in a larger

network more variation between the PDR of nodes was observed, and this variation resulted in

a larger number of false positives. However, after proper tweaking, the number of true positives

remained high enough to ensure detection of the sinkhole with a small number of false positives.

4.5.2 HELLO Flood Attack

In order to simulate a network under attack by a HELLO Flooder we create a MANET

consisting of twenty randomly placed nodes (see Figure 4.6). The area covered by the network

is 20,000 square meters. The nodes are stationary and the parameters for the member nodes

are uniform. Tra�c supplied by the OPNET MANET model is used. Each node is a tra�c

generator. No specialized tra�c is added, and no additional noise is added to the network. Ad
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Table 4.10 Comparison of Sinkhole Discovery in Large Networks (Four Hop Routes) with

Enhanced Threshold

Without New Criteria With New Criteria

Correctly

Alerted

(True

Positive)

35 nodes 28 nodes

Correctly

Did Not

Alert (True

Negative)

7 nodes 64 nodes

Incorrectly

Alerted

(False

Positive)

58 nodes 1 node

Incorrectly

Did Not

Alert (False

Negative)

0 nodes 7 nodes

Percent

Correctly

Alerted

100% 80%

hoc on demand (AODV) routing is chosen as the routing protocol. Route length for the iden-

ti�cation method is limited to �ve nodes, with four hops. The routes used for the calculations

are not all inclusive. Therefore, not all neighbors may play a part in determining the calculated

neighbor reliability value. Parameters for the member nodes are shown in Table 4.12.

The transmission power of the member nodes was .0001 w. The transmission power of the

attacking node was raised to .100 w; this allowed the attacker to transmit the HELLO packets

to approximately half of the network. The packet reception power threshold was -95 dBm for

all nodes. The number of dropped packets at this setting impacted signi�cantly the amount

of data tra�c sent by the attacking node. The attacker was also close enough to the network

to receive packets from some of the closest nodes. Normal nodes received an average of 63,958

packets over the 200 second simulation period, as opposed to the 3776 data packets received by

the HELLO �ooder. Note that the 200 second simulation period and the 15 second intervals

were arbitrary. Data collected per node included:
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Table 4.11 Results for Large Network - Five, Six, Seven Node Routes

Five Node

Routes - 35

Nodes in

Range

Six Node

Routes - 48

Nodes in

Range

Seven Node

Routes - 63

Nodes in

Range

W/out

New

Criteria

With

New

Criteria

W/out

New

Criteria

With

New

Criteria

W/out

New

Criteria

With

New

Criteria

Correctly

Alerted

(True

Positive)

35 nodes 28 nodes 47 nodes 34 nodes 61 nodes 46 nodes

Correctly

Did Not

Alert (True

Negative)

7 nodes 64 nodes 10 nodes 48 nodes 8 nodes 30 nodes

Incorrectly

Alerted

(False

Positive)

58 nodes 1 node 43nodes 5 node 30 nodes 8 node

Incorrectly

Did Not

Alert (False

Negative)

0 nodes 7 nodes 0 nodes 13 nodes 0 nodes 15 nodes

Percent

Correctly

Alerted

100% 80% 98% 71% 97% 73%

1. At each node, the number of packets received per second in �fteen second intervals.

2. At each node, the number of packets sent per second in �fteen second interval.

4.5.2.1 Discovery and Identi�cation Processes Using Simulation Results

To �nd the neighbor reliability in our simulation, we �rst calculate the route reliability by

multiplying the PDRs for each node along a route, starting at the �rst hop (as opposed to the

sending node). Next we calculate the entropy of all known routes through the neighbor node.

Plotting the neighbor reliability values on a plot of the network shows that the lower values

tend to be centered around the sinkhole.
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Table 4.12 Network Parameters

Node Parameters Value

Transmit Power (member nodes) .0001 w

Transmit Power (attacker) .100 w

Hello interval (member nodes) (1, 1.1)

Hello interval (attack node) (.1, .2)

Route Length 5 nodes, 4 hops

For an example, we assume node N is the �rst node to identify a possible attacker. From the

reliability calculations (Table 4.13), node N identi�es neighbor U as having an entropy value

below the threshold value for node N. Node N currently has a view of the network that includes

its immediate neighbors, although node N may not know the relative locations of the neighbor

nodes at this time. Node N identi�es node U as the neighbor with the lowest reliability value.

Node N broadcasts this assignment to its neighbors, which includes node U.

Node U identi�es node Q as the neighbor with the lowest reliability, and broadcasts this to

the neighborhood. Since node M (the attacker) is broadcasting messages with greater power,

node Q perceives node M as a neighbor. Node Q identi�es node M as the neighbor with the

lowest neighbor reliability value. Node Q broadcasts this to the neighborhood.

Node M is not truly a neighbor of node Q; therefore node M does not receive the message

identifying it as the neighbor with the lowest reliability. Hence, node Q does not receive a

response from node M in time T. Node Q rebroadcasts the identi�cation of M and queries its

neighbors for their neighbor with the lowest reliability value. Nodes R, P, and K also believe

they share M as a neighbor, and M is their neighbor with the lowest reliability value. Node Q

announces the identity of the attacker as node M.

Table 4.13 Node N's Neighbor Reliability (values X 10e6)

Starting Node: N Cum. Rel.:

6115

Ave. Rel.:

1529

Reliability Neigh. List D P Q U

Reliability Value List 6046 1994 3455 .000232

Entropy Per Neigh.

List

196477 6474 1129325 .001825
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4.5.2.2 Analysis

Analysis of the data set shows that seven nodes in the twenty node network did not detect

the attack (see Figure 4.6). One node was the attacker itself. Five of these nodes were not

within range of the HELLO messages and did not list routes that included the attacker (node

M). Each of the twelve nodes in range of the attacker except node P alerted to at least one

of their neighbor nodes having entropy less than the one sigma lower boundary threshold. It

is noted that node P had a similar number of neighbors with routes through the attacker as

neighbors without. This resulted in not enough variation in the reliability values to indicate an

attacker. Node S was able to detect the attack; node S was su�ciently close to M that a few of

the messages were received and forwarded by node M. Starting the identi�cation process from

every alerted node found M to be the attacker.

There are cases in which the identi�cation process may not be initiated and the attacker

not found. However, as the network matures and nodes store routes with the attacker included

as a hop, the identi�cation process will be initiated. The special cases are listed below:

1. If a node exists that does not receive the HELLO �ood messages and has no routes stored

that traverse the attacker, the node will not detect the attack.

2. If a node exists with all routes traversing only one neighbor there will be no detection

alert by this node. This is due to the method of calculating the threshold.

3. If a node exists with with all routes traversing only two neighbors the detection process

will not be started. This is due to the method of calculating the threshold.

Table 4.14 Partial Table of Neighbor Reliability Values (values X 10e6)

U's

Neighbors

N Q T

Rel. Values 6023 2418 6156

Q's

Neighbors

K M N R U

Rel. Values 2267 .000219 5462 .000234 5843



www.manaraa.com

118

4. If a node exists that is within normal reception range of the attacker, and the attacker

properly routes packets it receives, the node will not detect the attack.

Figure 4.6 Simulated Network

4.6 Analysis of Network Overhead

The method presented does not depend upon stored patterns, signatures, or rules. It does,

however, require limited storage (s) of additional collected data and a small amount of energy

(e) for calculations. Messages (m) are only required for identi�cation when an attacker is

detected. Therefore, the overhead o can be described by the equation:

o = s+ e+m. (4.10)

4.6.1 Storage

In the detection method described we use the crossing of the neighbor reliability threshold

to alert a network node to the presence of an attacker. The neighbor reliability value calcula-

tions depend upon the packet delivery ratios experienced when messages are sent through each

neighbor. To determine the packet delivery ratio and the consequent neighbor reliability, each

node needs to store the number of packets sent and the number of packets received when routing

through each neighbor. This necessitates additional storage in the routing tables warehoused

at each node.
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The AODV routing tables already house information about the �next hop� to known desti-

nations. The �next hop� is an immediate neighbor. Therefore, the data we require to be stored

in the routing table can be associated with the �next hop�, or neighbor. We assign ss as the

storage space used to hold the number of packets sent and sr as the storage space for the number

of packets received. After the calculation for the neighbor reliability is completed, it is stored

in snr. The additional storage space s required by a network of i nodes, each with b neighbors,

can therefore be represented by the equation

s = ib(ss + sr + snr). (4.11)

4.6.2 Energy

The detection and identi�cation processes rely upon the calculation of the packet delivery

ratio and neighbor reliability values assigned to the b neighbors of the i nodes in the network.

The energy required for the packet delivery ratio calculation is represented by epd. Similarly, the

energy required by the neighbor reliability calculation is represented by enr. Additional energy

is required by the creation (emc) and distribution (emd) of the identi�cation messages m. The

total additional network energy consumption e required by the detection and identi�cation

processes can therefore be described by the equation

e = m(emc + emd) + ib(epd + enr). (4.12)

4.6.3 Messages

Messages are only required in the network if an attacker is detected. The number of messages

required by the method in the case of sinkhole detection is generally larger than the number of

messages required in the case of a HELLO Flood attacker. This is because the HELLO Flood

attacker broadcasts its HELLO message with greater energy, so many nodes in the network

believe the attacker is a neighbor. Hence, the �ooder is identi�ed from a greater distance. In

the case of the sinkhole attack, the node identifying the sinkhole will be a true neighbor of the

sinkhole.
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4.6.3.1 Sinkhole

Messages related to the identi�cation process are generated and transmitted in the network

only when an attacker is detected. As mentioned before, there are no additional network

messages required for the detection process. The message overhead is dependent upon how far,

or the number of hops h, the detecting node is from the attacker. Therefore, mLow refers to

the number of messages required for the assignments of LLow along the path to the attacker.

Also partially dependent upon the number of hops to the attacker are the number of neighbor

list messages (mnl) which are sent by nodes that have both the assigning node and LLow in

common. Whether the attacker participates in the process by assigning a LLow greatly a�ects

the number of messages generated. We therefore apply binomials j and k to re�ect participation

where j = 1 for no participation, and k = 1 if there is participation. The additional messages

generated near the attacker when the sinkhole or HELLO Flooder fails to participate is mf ,

with mp re�ecting the number of messages generated during the �splash back� beyond the

attacker due to its participation. Finally, we include the messages generated by the average

number of �voters�, mv . The number of messages required by the identi�cation method can be

approximated by the following equation:

m = mLow +mnl + kmp + jmf +mv. (4.13)

This equation can be simpli�ed by including the parameters for the number of hops and

the average number of neighbors common to Ln−1 and Ln in each hop. Here we use the grid

network with an average of eight neighbors per node:

m = h+ 2h+ 5k + 3j + 3 (4.14)

or

m = 3h+ 8k + 6j. (4.15)

Table 4.15 provides the number of messages generated for the identi�cation of the sinkhole

by each individual alerted node during simulation using the original thirty node grid network



www.manaraa.com

121

with one compliant sinkhole. Note that �hops� is often equal to the �ring� as listed in the table.

However, there are situations due to node placement on the ring in which two hops can occur

on a ring. Figure ?? provides a graph depicting the actual messages sent by nodes on each ring

compared to the estimated number of messages for the ring.

A protocol for sharing the burden of starting the sinkhole identi�cation process would need

to be developed in a real network, and is not in the scope of this paper. With the proper

protocol, only one node would start the identi�cation process, limiting the number of messages

as overhead. Note that the �path� provided in the Table 4.15 is not the route used to send

tra�c; it is the path followed from the detecting node to the sinkhole through the nodes with

the lowest neighbor reliability values.

Figure 4.7 Number of Messages Per Ring (One Sinkhole)

4.6.3.2 HELLO Flood

Messages related to the identi�cation process are generated and transmitted in the network

only when an attacker is detected. As mentioned before, there are no additional network

messages required for the detection process. The message overhead is dependent upon the

number of hops h the detecting node is from the attacker itself, or from a node that believes the

attacker is a neighbor. We include the messages generated by the average number of �voters�,

mv for both voting and providing neighbor lists mnl. Note that as we get close enough to the

HELLO �ooder all of the Lx neighbors believe they are neighbors to both LLOW (the attacker)

and L, so they all provide neighbor lists. We also include one message for the second query
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made by the assigning node that gets no reply from the attacker. The number of messages

required by the identi�cation method can be approximated by the following equation:

m = h+mnl +mv + 1. (4.16)

Figure 4.8 provides a graph depicting the messages sent during simulation by nodes on

each ring compared to the number of messages estimated by Equation 4.16 for the ring. As

mentioned in the sinkhole message analysis, a protocol for sharing the burden of starting the

HELLO �ood attacker identi�cation process would need to be developed in a real network, and

is not in the scope of this paper. With the proper protocol, only one node would start the

identi�cation process, limiting the number of messages as overhead.

Figure 4.8 Number of Messages Per Ring (HELLO Flood Attack)

4.6.4 Steps Required for Attacker Detection and Identi�cation

There are two phases that must be considered when modeling the number of required steps c

for the described method. We assign cd to the number of steps required in the detection phase,

and cid to the number of steps required for the identi�cation phase. The following equation

therefore re�ects the total number of steps required in order to identify an attacker:

c = cd + cid. (4.17)

In the detection phase a node assigned by an established burden-sharing protocol will use

the stored packets received and sent data to calculate the neighbor reliabilities for its neighbors.
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The node will then calculate the threshold, and compare the neighbor reliabilities to the the

threshold. With cnr representing the neighbor reliability calculation step, cthr representing the

threshold calculation, and ccom representing the comparison step, the steps to detection can be

represented by the equation:

cd = cnr + cthr + ccom. (4.18)

Each of the factors in the equation for cd is equal to one, so we can simplify this equation to

cd = 3.

The number of steps required for attacker identi�cation is highly dependent upon how far,

or the number of hops h, the detecting node is from the attacker. In the case of the HELLO

Flood attacker, h represents the number of hops to a node that perceives itself as a neighbor

to the attacker. This number is represented by ch. We remind you that there are situations

due to node placement on the ring in which two hops, or steps, can occur on a ring. There are

additional steps depending upon whether the attacker participates in the identi�cation process.

To model this we again apply binomials j and k to re�ect participation, where j = 1 for no

participation and k = 1 if there is participation. In the case of the HELLO Flood attacker, we

can expect j = 1 in most cases since the attacker will be too far from the identi�ers to hear the

identi�cation and voting messages. Finally, we add the voting step, cv which takes place at the

end of the process. The number of steps required by the identi�cation phase can therefore be

represented by the equation:

cid = ch + jcf + kcp + cv. (4.19)

By including the parameters for the number of hops and the known subset number of steps for

the participation and non-participation cases, the equation for the steps for identi�cation can

be simpli�ed to:

cid = h+ j + 2k + 1 (4.20)

or

cid = h+ 2j + 3k. (4.21)
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The total number of steps required for the detection and identi�cation of an attacker can

now be approximated by the equation.

c = 3 + h+ 2j + 3k (4.22)

Further simpli�cation gives us the equation:

c = h+ 5j + 3k. (4.23)

The number of steps per route required by the identi�cation process for the single sinkhole are

listed in Table 4.15, and the number of steps required for HELLO �ood attacker identi�cation

are listed in 4.16. The sinkhole analysis is for the simulation using the original thirty node grid

network with one compliant sinkhole. We assume the attacker is participating in the process

during simulation (if it is in range of message reception) when calculating the number of steps

listed in the tables. Figure ?? provides a graph depicting the actual number steps required for

the nodes in each ring to identify the sinkhole, as compared to the estimated number of steps.

Figure 4.10 provides the same data for the HELLO �ood attacker.

Figure 4.9 Number of Steps Per Ring (One Sinkhole)

4.7 Conclusion

In this paper we presented a hypothesis that, by adapting a methodology borrowed from

the science of meteorology, we can utilize the data available at both the node and cooperative
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Figure 4.10 Number of Steps Per Ring (HELLO Flood Attack)

network levels to create a synoptic picture of the network health, providing indications of any

intrusions or other network issues. Our major contribution is to provide a revolutionary way

to analyze node and network data for patterns, dependence, and e�ects that indicate network

issues at a distance. We collect node and network data, combine and manipulate it, and tease

out information about the state of the network. By using the data gathered, such as packet

delivery ratio, node reliability, and route reliability, we showed we could combine, analyze, and

interpret the data to build a picture of the network state. We demonstrated this by simulating

one or more sinkholes in a grid network of thirty nodes, one sinkhole in a scrambled network

of thirty nodes, and a HELLO �ood attacker in a scrambled network of twenty nodes. With

proper mathematical analysis of the data we were able to build a network picture and identify

the attackers with little energy expended for calculation or messages. This method did not rely

upon the conventional methods of stored patterns for comparison, but only proper analysis of

a subset of the real time parameters of the network.

Simulations using the network described in Table 4.12 showed that the original scheme

found false sinkholes in networks with eight or fewer sinkhole nodes. However, the addition of a

second threshold resulted in the elimination of the false positives, with the trade o� of increased

false negatives in networks of six or more sinkholes. This tradeo� is justi�ed because we can

realistically expect a network to have fewer than six (sinkhole) attackers. Therefore, using the

two thresholds provides proper intrusion detection for this type of attack.
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Table 4.15 Messages Generated in Identi�cation Process (Sinkhole)

Ring

(n)

Detecting

Node

Path Actual

# of

Steps

Actual #

of

Messages

Ring

(n)

Detecting

Node

Path Actual

# of

Steps

Actual #

of

Messages

1 Q Q-W 4 12 2 T T-X-W 5 12

1 R R-W 4 11 2 U U-Z-V-

W

6 16

1 S S-W 4 11 2 Y Y-CC-W 5 11

1 V V-W 4 13 2 Z Z-V-W 5 13

1 X X-W 4 10 2 DD DD-X-

W

5 12

1 AA AA-W 4 12 3 F F-L-R-

W

6 18

1 BB BB-W 4 13 3 G G-H-M-

R-W

7 20

1 CC CC-W 4 11 3 H H-M-R-

W

6 17

2 K K-Q-W 5 15 3 I I-N-R-W 6 17

2 L L-R-W 5 15 3 J J-N-R-

W

6 16

2 M M-R-W 5 16 4 A A-G-H-

M-R-W

8 21

2 N N-R-W 5 13 4 B B-H-M-

R-W

7 21

2 O O-T-X-

W

6 14 4 C C-G-H-

M-R-W

8 22

2 P P-V-W 5 15 4 D D-H-M-

R-W

7 21

Simulations in a larger network indicated the proposed method required an adjusted criteria

to eliminate a number of the false positives. This result implies that the method described will

work for di�erently sized networks. However, additional work needs to be done to determine

standard criteria, or a method of determining network-based criteria, that is applicable to

di�erent sizes of networks. Additionally, Shannon's entropy equation was used for the analysis

of the network results. It is possible that another entropy equation may provide �ner results

that may be less a�ected by the level of �delity required by each network.

Our results included the numbers of nodes in the simulated networks that would start the

identi�cation process and identify the attackers presented based upon the threshold criteria. For
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Table 4.16 Messages Generated in Identi�cation Process (HELLO Flood)

Actual

Ring (n)

/ Per-

ceived

Ring

Detecting

Node

Path Actual

Num-

ber of

Steps

Actual

Num-

ber of

Mes-

sages

Actual

Ring (n)

/ Per-

ceived

Ring

Detecting

Node

Path Actual

Num-

ber of

Steps

Actual

Num-

ber of

Mes-

sages

1/1 S S-M 4 11 3/1 K K-M 5 7

2/1 E E-M 5 8 3/2 Q Q-R-

M

6 8

2/1 H H-M 5 14 4/2 G G-A-

M

6 8

2/1 C C-M 5 10 4/3 D D-G-

A-M

7 9

2/1 R R-M 5 10 4/3 U U-Q-

R-M

7 9

3/1 A A-M 5 9 4/4 N N-U-

Q-R-

M

8 9

3/1 F F-M 5 10

the sinkhole or HELLO �ood attacker identi�cation process to be implemented in a real network,

a protocol for sharing the responsibility of identifying the attacker would need to be developed.

The objective of the protocol would be to allow identi�cation of the attacker while limiting

the number of nodes starting the identi�cation process, and the number of messages �ooding

the network. Possible strategies are a round robin system based upon time, or assignment of

responsibility to cluster heads.

The synoptic analysis technique presented in this paper is founded upon comparing the

counts of events in or e�ects on the wireless network. Other attacks that are based upon causing

or a�ecting countable events that trigger changes in network characteristics are candidates for

synoptic analysis. Attacks at the physical, network, and data link layers such as jamming

and wormhole assaults are likely contenders. Challenges to the use of the technique described

include the development of protocols to identify the initiating node(s) and the development of

a proper network reaction. An additional challenge is a method to provide the network nodes

with more distributed network data without increasing the controlling network tra�c.
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CHAPTER 5. CONCLUSION

With our increasing usage of the air as a medium for connecting electronically with the world,

the current spectrum de�ned for commercial and personal usage has become crowded. This

trend is expected to continue. The cognitive radio network with software de�ned capabilities will

open to users more spectrum frequencies, and hence, enhanced communication opportunities.

However, the new technology also provides avenues for new attacks perpetrated by malicious

or sel�sh users with the desire to inhibit communication, capture or change the message, or use

the spectrum exclusively.

In the second chapter of this dissertation we explored the structures of malicious attacks on

the cognitive radio network. We identi�ed attacks from both the traditional cellular networks

and the wireless sensor network arena that apply to the cognitive radio network. We also

presented attack scenarios speci�c to the cognitive radio network architecture and capabilities.

Following each attack scenario we presented mitigating techniques particular to the attack.

In the third chapter we presented a hypothesis that, by adapting a methodology borrowed

from the science of meteorology, we could utilize the data available at both the node and coop-

erative network levels to create a synoptic picture of the network health, providing indications

of any intrusions or other network issues. Our major contribution was to provide a revolution-

ary way to analyze node and network data for patterns, dependence, and e�ects that indicate

network issues at a distance. By using the data gathered, such as packet delivery ratio, node

reliability, and route reliability, we showed we could combine, analyze, and interpret the data to

build a picture of the network state. We demonstrated this by simulating one or more sinkholes

in a grid network of thirty nodes. We expanded upon the premise with additional studies in the

fourth chapter. We simulated one sinkhole in a scrambled network of thirty nodes, one sinkhole

in hundred node grid network, and a HELLO �ood attacker in a scrambled network of twenty
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nodes. With proper mathematical analysis of the data we were able to build a network picture

and identify the attackers with little energy expended for calculation or messages. This method

did not rely upon the conventional methods of stored patterns for comparison, but only proper

analysis of a subset of the real time parameters of the network.

Simulations using the network described in Table 4.12 showed that the original scheme

found false sinkholes in networks with eight or fewer sinkhole nodes. However, the addition

of a second threshold resulted in the elimination of the false positives, with the trade o� of

increased false negatives in networks of six or more sinkholes. This tradeo� is justi�ed because

we can realistically expect a network to have fewer than six (sinkhole) attackers. Analysis of

the data derived from the larger, one hundred node network indicated that new thresholding

criteria was required for the larger network in order to eliminate false positives. Therefore,

using the two thresholds provides proper intrusion detection for this type of attack, and the

proper thresholding scheme is dependent upon the size of the network.

Our results included the numbers of nodes in the simulated networks that would start the

identi�cation process and identify the attackers presented based upon the threshold criteria. For

the sinkhole or HELLO �ood attacker identi�cation process to be implemented in a real network,

a protocol for sharing the responsibility of identifying the attacker would need to be developed.

The objective of the protocol would be to allow identi�cation of the attacker while limiting

the number of nodes starting the identi�cation process, and the number of messages �ooding

the network. Possible strategies are a round robin system based upon time, or assignment of

responsibility to cluster heads.

The synoptic analysis technique presented in this dissertation is founded upon comparing the

counts of events in or e�ects on the wireless network. Other attacks that are based upon causing

or a�ecting countable events that trigger changes in network characteristics are candidates for

synoptic analysis. Attacks at the physical, network, and data link layers such as jamming

and wormhole assaults are likely contenders. Challenges to the use of the technique described

include the development of protocols to identify the initiating node(s) and the development of

a proper network reaction. An additional challenge is a method to provide the network nodes

with more distributed network data without increasing the controlling network tra�c.
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The greatest advantage to incorporating the presented method into the intrusion detection

toolbox is that the data required for analysis is all derived from the current network. Proper

analysis of the data provides a window into the state of the current activity of the network,

or its �network health�. By using carefully selected data we may be able to reduce the data

overload experienced by the system administator, and instead identify and stop attacks on the

network in a timely manner.
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